Shrinkwrapping and the taming of hyperbolic 3-manifolds
HTML articles powered by AMS MathViewer
- by Danny Calegari and David Gabai;
- J. Amer. Math. Soc. 19 (2006), 385-446
- DOI: https://doi.org/10.1090/S0894-0347-05-00513-8
- Published electronically: December 7, 2005
- HTML | PDF
Abstract:
We introduce a new technique for finding CAT$(-1)$ surfaces in hyperbolic 3-manifolds. We use this to show that a complete hyperbolic 3-manifold with finitely generated fundamental group is geometrically and topologically tame.References
- I. Agol, Tameness of hyperbolic $3$–manifolds, eprint math.GT/0405568.
- Lars V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413–429. MR 167618, DOI 10.2307/2373173
- Lars V. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 251–254. MR 194970, DOI 10.1073/pnas.55.2.251
- Ioannis Athanasopoulos, Coincidence set of minimal surfaces for the thin obstacle, Manuscripta Math. 42 (1983), no. 2-3, 199–209. MR 701203, DOI 10.1007/BF01169583
- Werner Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin. MR 1377265, DOI 10.1007/978-3-0348-9240-7
- Lipman Bers, Local behavior of solutions of general linear elliptic equations, Comm. Pure Appl. Math. 8 (1955), 473–496. MR 75416, DOI 10.1002/cpa.3160080404
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Matthew G. Brin and T. L. Thickstun, Open, irreducible $3$-manifolds which are end $1$-movable, Topology 26 (1987), no. 2, 211–233. MR 895574, DOI 10.1016/0040-9383(87)90062-0
- Matthew G. Brin and T. L. Thickstun, $3$-manifolds which are end $1$-movable, Mem. Amer. Math. Soc. 81 (1989), no. 411, viii+73. MR 992161, DOI 10.1090/memo/0411
- Jeffrey F. Brock and Kenneth W. Bromberg, On the density of geometrically finite Kleinian groups, Acta Math. 192 (2004), no. 1, 33–93. MR 2079598, DOI 10.1007/BF02441085
- Jeffrey Brock, Kenneth Bromberg, Richard Evans, and Juan Souto, Tameness on the boundary and Ahlfors’ measure conjecture, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 145–166. MR 2031201, DOI 10.1007/s10240-003-0018-y
- J. Brock, R. Canary & Y. Minsky, The classification of Kleinian surface groups II: The ending lamination conjecture, eprint math.GT/0412006.
- J. Brock & J. Souto, Algebraic limits of geometrically finite manifolds are tame, preprint.
- E. M. Brown and C. D. Feustel, On properly embedding planes in arbitrary $3$-manifolds, Proc. Amer. Math. Soc. 94 (1985), no. 1, 173–178. MR 781077, DOI 10.1090/S0002-9939-1985-0781077-2
- L. A. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), no. 9, 1067–1075. MR 542512, DOI 10.1080/03605307908820119
- Richard D. Canary, Ends of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 6 (1993), no. 1, 1–35. MR 1166330, DOI 10.1090/S0894-0347-1993-1166330-8
- Richard D. Canary, A covering theorem for hyperbolic $3$-manifolds and its applications, Topology 35 (1996), no. 3, 751–778. MR 1396777, DOI 10.1016/0040-9383(94)00055-7
- Richard D. Canary and Yair N. Minsky, On limits of tame hyperbolic $3$-manifolds, J. Differential Geom. 43 (1996), no. 1, 1–41. MR 1424418
- Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 225986
- A. Champanerkar, J. Lewis, M. Lipyanskiy & S. Meltzer, Exceptional regions and associated exceptional hyperbolic $3$-manifolds, preprint.
- Hyeong In Choi and Richard Schoen, The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985), no. 3, 387–394. MR 807063, DOI 10.1007/BF01388577
- Tobias H. Colding and William P. Minicozzi II, Minimal surfaces, Courant Lecture Notes in Mathematics, vol. 4, New York University, Courant Institute of Mathematical Sciences, New York, 1999. MR 1683966
- D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR 903852
- R. A. Evans, Tameness persists in weakly type-preserving strong limits, Amer. J. Math. 126 (2004), no. 4, 713–737. MR 2075479
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 257325
- Benedict Freedman and Michael H. Freedman, Kneser-Haken finiteness for bounded $3$-manifolds locally free groups, and cyclic covers, Topology 37 (1998), no. 1, 133–147. MR 1480882, DOI 10.1016/S0040-9383(97)00007-4
- Michael Freedman, Joel Hass, and Peter Scott, Least area incompressible surfaces in $3$-manifolds, Invent. Math. 71 (1983), no. 3, 609–642. MR 695910, DOI 10.1007/BF02095997
- Jens Frehse, Two dimensional variational problems with thin obstacles, Math. Z. 143 (1975), no. 3, 279–288. MR 380550, DOI 10.1007/BF01214380
- David Gabai, Foliations and the topology of $3$-manifolds, J. Differential Geom. 18 (1983), no. 3, 445–503. MR 723813
- David Gabai, On the geometric and topological rigidity of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 10 (1997), no. 1, 37–74. MR 1354958, DOI 10.1090/S0894-0347-97-00206-3
- David Gabai, G. Robert Meyerhoff, and Nathaniel Thurston, Homotopy hyperbolic 3-manifolds are hyperbolic, Ann. of Math. (2) 157 (2003), no. 2, 335–431. MR 1973051, DOI 10.4007/annals.2003.157.335
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
- Joel Hass and Peter Scott, The existence of least area surfaces in $3$-manifolds, Trans. Amer. Math. Soc. 310 (1988), no. 1, 87–114. MR 965747, DOI 10.1090/S0002-9947-1988-0965747-6
- Allen Hatcher, Homeomorphisms of sufficiently large $P^{2}$-irreducible $3$-manifolds, Topology 15 (1976), no. 4, 343–347. MR 420620, DOI 10.1016/0040-9383(76)90027-6
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1976. MR 415619
- Klaus Johannson, Homotopy equivalences of $3$-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR 551744
- K. N. Jones and A. W. Reid, Vol3 and other exceptional hyperbolic 3-manifolds, Proc. Amer. Math. Soc. 129 (2001), no. 7, 2175–2185. MR 1825931, DOI 10.1090/S0002-9939-00-05775-0
- Jürgen Jost, Riemannian geometry and geometric analysis, 3rd ed., Universitext, Springer-Verlag, Berlin, 2002. MR 1871261, DOI 10.1007/978-3-662-04672-2
- David Kinderlehrer, The smoothness of the solution of the boundary obstacle problem, J. Math. Pures Appl. (9) 60 (1981), no. 2, 193–212. MR 620584
- Gero Kleineidam and Juan Souto, Ending laminations in the Masur domain, Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001) London Math. Soc. Lecture Note Ser., vol. 299, Cambridge Univ. Press, Cambridge, 2003, pp. 105–129. MR 2044547, DOI 10.1017/CBO9780511542817.006
- Hans Lewy, On the coincidence set in variational inequalities, J. Differential Geometry 6 (1972), 497–501. MR 320343
- M. Lipyanskiy, A computer assisted application of Poincaré’s fundamental polyhedron theorem, preprint.
- Albert Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462. MR 349992, DOI 10.2307/1971059
- A. Malcev, On isomorphic matrix representations of infinite groups, Rec. Math. [Mat. Sbornik] N.S. 8(50) (1940), 405–422 (Russian, with English summary). MR 3420
- Darryl McCullough, Compact submanifolds of $3$-manifolds with boundary, Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 147, 299–307. MR 854628, DOI 10.1093/qmath/37.3.299
- D. McCullough, A. Miller, and G. A. Swarup, Uniqueness of cores of noncompact $3$-manifolds, J. London Math. Soc. (2) 32 (1985), no. 3, 548–556. MR 825931, DOI 10.1112/jlms/s2-32.3.548
- William Meeks III, Leon Simon, and Shing Tung Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621–659. MR 678484, DOI 10.2307/2007026
- William H. Meeks III and Shing Tung Yau, The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma, Topology 21 (1982), no. 4, 409–442. MR 670745, DOI 10.1016/0040-9383(82)90021-0
- Robert Meyerhoff, A lower bound for the volume of hyperbolic $3$-manifolds, Canad. J. Math. 39 (1987), no. 5, 1038–1056. MR 918586, DOI 10.4153/CJM-1987-053-6
- Y. Minsky, The classification of Kleinian surface groups I: Models and bounds, eprint math.GT/0302208.
- John W. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, The Smith conjecture (New York, 1979) Pure Appl. Math., vol. 112, Academic Press, Orlando, FL, 1984, pp. 37–125. MR 758464, DOI 10.1016/S0079-8169(08)61637-2
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 202511
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383
- Robert Myers, End reductions, fundamental groups, and covering spaces of irreducible open 3-manifolds, Geom. Topol. 9 (2005), 971–990. MR 2140996, DOI 10.2140/gt.2005.9.971
- Johannes C. C. Nitsche, Variational problems with inequalities as boundary conditions or how to fashion a cheap hat for Giacometti’s brother, Arch. Rational Mech. Anal. 35 (1969), 83–113. MR 248585, DOI 10.1007/BF00247614
- Ken’ichi Ohshika, Kleinian groups which are limits of geometrically finite groups, Mem. Amer. Math. Soc. 177 (2005), no. 834, xii+116. MR 2154090, DOI 10.1090/memo/0834
- Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
- Yu. G. Reshetnyak, Two-dimensional manifolds of bounded curvature, Geometry, IV, Encyclopaedia Math. Sci., vol. 70, Springer, Berlin, 1993, pp. 3–163, 245–250. MR 1263964, DOI 10.1007/978-3-662-02897-1_{1}
- D. Richardson, Variational problems with thin obstacles, Thesis, UBC (1978).
- Richard Schoen, Estimates for stable minimal surfaces in three-dimensional manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 111–126. MR 795231
- R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, DOI 10.2307/1971247
- G. P. Scott, Compact submanifolds of $3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, DOI 10.1112/jlms/s2-7.2.246
- T. Soma, Existence of polygonal wrappings in hyperbolic $3$-manifolds, preprint.
- Juan Souto, A note on the tameness of hyperbolic 3-manifolds, Topology 44 (2005), no. 2, 459–474. MR 2114957, DOI 10.1016/j.top.2004.09.001
- John Stallings, On fibering certain $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Inc., Englewood Cliffs, NJ, 1961, pp. 95–100. MR 158375
- W. P. Thurston, Geometry and topology of $3$-manifolds, 1978, Princeton Math. Dept. Lecture Notes.
- William P. Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130. MR 823443
- Thomas W. Tucker, Non-compact $3$-manifolds and the missing-boundary problem, Topology 13 (1974), 267–273. MR 353317, DOI 10.1016/0040-9383(74)90019-6
- Thomas W. Tucker, On the Fox-Artin sphere and surfaces in noncompact $3$-manifolds, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 110, 243–253. MR 448355, DOI 10.1093/qmath/28.2.243
- I. N. Vekua, Systems of differential equations of the first order of elliptic type and boundary value problems, with an application to the theory of shells, Mat. Sbornik N.S. 31(73) (1952), 217–314 (Russian). MR 57444, DOI 10.1080/07468342.2000.11974167
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
Bibliographic Information
- Danny Calegari
- Affiliation: Department of Mathematics, Caltech, Pasadena, California 91125
- MR Author ID: 605373
- David Gabai
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 195365
- Received by editor(s): June 22, 2004
- Published electronically: December 7, 2005
- Additional Notes: The first author was partially supported by Therese Calegari and NSF grant DMS-0405491
The second author was partially supported by NSF grant DMS-0071852 - © Copyright 2005 by Danny Calegari and David Gabai
- Journal: J. Amer. Math. Soc. 19 (2006), 385-446
- MSC (2000): Primary 57M50, 57N10; Secondary 30F40, 49F10
- DOI: https://doi.org/10.1090/S0894-0347-05-00513-8
- MathSciNet review: 2188131