On the arithmetic of tight closure
HTML articles powered by AMS MathViewer
- by Holger Brenner and Mordechai Katzman;
- J. Amer. Math. Soc. 19 (2006), 659-672
- DOI: https://doi.org/10.1090/S0894-0347-05-00514-X
- Published electronically: December 22, 2005
- PDF | Request permission
Abstract:
We provide a negative answer to an old question in tight closure theory by showing that the containment $x^3y^3 \in (x^4,y^4,z^4)^*$ in $\mathbb {K}[x,y,z]/(x^7+y^7-z^7)$ holds for infinitely many but not for almost all prime characteristics of the field $\mathbb {K}$. This proves that tight closure exhibits a strong dependence on the arithmetic of the prime characteristic. The ideal $(x,y,z) \subset \mathbb {K}[x,y,z,u,v,w]/(x^7+y^7-z^7, ux^4+vy^4+wz^4+x^3y^3)$ has then the property that the cohomological dimension fluctuates arithmetically between $0$ and $1$.References
- Holger Brenner, Tight closure and projective bundles, J. Algebra 265 (2003), no. 1, 45â78. MR 1984899, DOI 10.1016/S0021-8693(03)00222-9
- Holger Brenner, A characteristic zero Hilbert-Kunz criterion for solid closure in dimension two, Math. Res. Lett. 11 (2004), no. 5-6, 563â574. MR 2106225, DOI 10.4310/MRL.2004.v11.n5.a1
- H. Brenner. The Hilbert-Kunz function in graded dimension two. ArXiv, 2004.
- Holger Brenner, Slopes of vector bundles on projective curves and applications to tight closure problems, Trans. Amer. Math. Soc. 356 (2004), no. 1, 371â392. MR 2020037, DOI 10.1090/S0002-9947-03-03391-9
- H. Brenner. On a problem of Miyaoka. In Number Fields and Function FieldsâTwo Parallel Worlds, Progress in Math. 239, BirkhĂ€user, 51â59 (2005).
- CoCoATeam. CoCoA, a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it.
- David Gieseker, $p$-ample bundles and their Chern classes, Nagoya Math. J. 43 (1971), 91â116. MR 296078, DOI 10.1017/S0027763000014380
- D. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
- C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), no. 1, 119â135. MR 1234602, DOI 10.1007/BF02572395
- Nobuo Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981â996. MR 1646049, DOI 10.1353/ajm.1998.0037
- Nobuo Hara, Geometric interpretation of tight closure and test ideals, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1885â1906. MR 1813597, DOI 10.1090/S0002-9947-01-02695-2
- Robin Hartshorne, Ample vector bundles, Inst. Hautes Ătudes Sci. Publ. Math. 29 (1966), 63â94. MR 193092
- Robin Hartshorne and Robert Speiser, Local cohomological dimension in characteristic $p$, Ann. of Math. (2) 105 (1977), no. 1, 45â79. MR 441962, DOI 10.2307/1971025
- Melvin Hochster, Solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 103â172. MR 1266182, DOI 10.1090/conm/159/01508
- Melvin Hochster, Tight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 173â196. MR 1266183, DOI 10.1090/conm/159/01507
- M. Hochster and C. Huneke. Tight closure in equal zero characteristic. Preprint.
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31â116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Craig Huneke, Tight closure and its applications, CBMS Regional Conference Series in Mathematics, vol. 88, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With an appendix by Melvin Hochster. MR 1377268, DOI 10.1016/0167-4889(95)00136-0
- Craig Huneke, Tight closure, parameter ideals, and geometry, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, BirkhĂ€user, Basel, 1998, pp. 187â239. MR 1648666
- Mordechai Katzman, Finite criteria for weak $F$-regularity, Illinois J. Math. 40 (1996), no. 3, 453â463. MR 1407629
- Yoichi Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449â476. MR 946247, DOI 10.2969/aspm/01010449
- T. Muir. The Theory of Determinants in the Historical Order of Development, volume III. Macmillan, London, 1920.
- Hans Schoutens, Non-standard tight closure for affine $\Bbb C$-algebras, Manuscripta Math. 111 (2003), no. 3, 379â412. MR 1993501, DOI 10.1007/s00229-003-0380-6
- Jean-Pierre Serre, Cours dâarithmĂ©tique, Collection SUP: âLe MathĂ©maticienâ, vol. 2, Presses Universitaires de France, Paris, 1970 (French). MR 255476
- N. I. Shepherd-Barron, Semi-stability and reduction mod $p$, Topology 37 (1998), no. 3, 659â664. MR 1604907, DOI 10.1016/S0040-9383(97)00038-4
- A. Singh and U. Walther. On the arithmetic rank of certain Segre products. ArXiv, 2004.
- Karen E. Smith, The multiplier ideal is a universal test ideal, Comm. Algebra 28 (2000), no. 12, 5915â5929. Special issue in honor of Robin Hartshorne. MR 1808611, DOI 10.1080/00927870008827196
- Karen E. Smith, Tight closure and vanishing theorems, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, pp. 149â213. MR 1919458
- V. Trivedi. Hilbert-Kunz multiplicity and reduction mod $p$. ArXiv, 2004.
- V. van Zeipel. Om determinanter, hvars elementer Ă€ro binomialkoefficienter. Lunds Universitet, Ă rsskrift ii:1â68, 1865.
Bibliographic Information
- Holger Brenner
- Affiliation: Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
- MR Author ID: 322383
- Email: H.Brenner@sheffield.ac.uk
- Mordechai Katzman
- Affiliation: Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
- Email: M.Katzman@sheffield.ac.uk
- Received by editor(s): December 3, 2004
- Published electronically: December 22, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 659-672
- MSC (2000): Primary 13A35; Secondary 11A41, 14H60
- DOI: https://doi.org/10.1090/S0894-0347-05-00514-X
- MathSciNet review: 2220102