Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

A solution to the L space problem


Author: Justin Tatch Moore
Journal: J. Amer. Math. Soc. 19 (2006), 717-736
MSC (2000): Primary 54D20, 54D65, 03E02, 03E75; Secondary 54F15
DOI: https://doi.org/10.1090/S0894-0347-05-00517-5
Published electronically: December 21, 2005
MathSciNet review: 2220104
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper I will construct a non-separable hereditarily Lindelöf space (L space) without any additional axiomatic assumptions. The constructed space $ \mathscr{L}$ is a subspace of $ {\mathbb{T}}^{\omega_1}$ where $ \mathbb{T}$ is the unit circle. It is shown to have a number of properties which may be of additional interest. For instance it is shown that the closure in $ \mathbb{T}^{\omega_1}$ of any uncountable subset of $ \mathscr{L}$ contains a canonical copy of $ \mathbb{T}^{\omega_1}$.

I will also show that there is a function $ f:[\omega_1]^2 \to \omega_1$ such that if $ A,B \subseteq \omega_1$ are uncountable and $ \xi < \omega_1$, then there are $ \alpha < \beta$ in $ A$ and $ B$ respectively with $ f (\alpha,\beta) = \xi$. Previously it was unknown whether such a function existed even if $ \omega_1$ was replaced by $ 2$. Finally, I will prove that there is no basis for the uncountable regular Hausdorff spaces of cardinality $ \aleph_1$.

The results all stem from the analysis of oscillations of coherent sequences $ \langle e_\beta:\beta < \omega_1\rangle$ of finite-to-one functions. I expect that the methods presented will have other applications as well.


References [Enhancements On Off] (What's this?)

  • 1. J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708
  • 2. D. H. Fremlin, Consequences of Martin’s axiom, Cambridge Tracts in Mathematics, vol. 84, Cambridge University Press, Cambridge, 1984. MR 780933
  • 3. Gary Gruenhage, Perfectly normal compacta, cosmic spaces, and some partition problems, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 85–95. MR 1078642
  • 4. G. Gruenhage and J. Tatch Moore.
    Perfect compacta and basis problems in topology.
    In Open Problems in Topology II.
    In preparation, Sept. 2005.
  • 5. A. Hajnal and I. Juhász, On hereditarily 𝛼-Lindelöf and hereditarily 𝛼-separable spaces, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 11 (1968), 115–124. MR 240779
  • 6. T. Jech, Multiple forcing, Cambridge Tracts in Mathematics, vol. 88, Cambridge University Press, Cambridge, 1986. MR 895139
  • 7. I. Juhász, A survey of 𝑆- and 𝐿-spaces, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 675–688. MR 588816
  • 8. L. Kronecker.
    Näherungsweise ganzzahlige Auflösung linearer Gleichungen.
    S.-B. Preuss. Akad. Wiss., 1884.
    S.-B. Preuss. Akad. Wiss. 1179-83, 1271-99, Werke III (1), 47-109.
  • 9. Kenneth Kunen, Strong 𝑆 and 𝐿 spaces under 𝑀𝐴, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976) Academic Press, New York, 1977, pp. 265–268. MR 0440487
  • 10. Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR 756630
  • 11. Dj. Kurepa.
    Ensembles ordonnés et ramifiés.
    Publ. Math. Univ. Belgrade, 4:1-138, 1935.
  • 12. Judy Roitman, Basic 𝑆 and 𝐿, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 295–326. MR 776626
  • 13. Mary Ellen Rudin, 𝑆 and 𝐿 spaces, Surveys in general topology, Academic Press, New York-London-Toronto, Ont., 1980, pp. 431–444. MR 564109
  • 14. W. Sierpinski.
    Sur l'equivalence de trois propriétés des ensembles abstraits.
    Fundamenta Mathematicae, 2:179-188, 1921.
  • 15. M. Suslin.
    Problème 3.
    Fund. Math., 1:223, 1920.
  • 16. Z. Szentmiklóssy, 𝑆-spaces and 𝐿-spaces under Martin’s axiom, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 1139–1145. MR 588860
  • 17. P. L. Tchebychef.
    Sur une question arithmétique.
    Denkschr. Akad. Wiss. St. Petersburg, 1(4):637-84, 1866.
  • 18. Stevo Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), no. 2, 703–720. MR 716846, https://doi.org/10.1090/S0002-9947-1983-0716846-0
  • 19. Stevo Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), no. 3-4, 261–294. MR 908147, https://doi.org/10.1007/BF02392561
  • 20. Stevo Todorčević, Oscillations of real numbers, Logic colloquium ’86 (Hull, 1986) Stud. Logic Found. Math., vol. 124, North-Holland, Amsterdam, 1988, pp. 325–331. MR 922115, https://doi.org/10.1016/S0049-237X(09)70663-9
  • 21. Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949
  • 22. Stevo Todorcevic, A classification of transitive relations on 𝜔₁, Proc. London Math. Soc. (3) 73 (1996), no. 3, 501–533. MR 1407459, https://doi.org/10.1112/plms/s3-73.3.501
  • 23. Stevo Todorcevic, Basis problems in combinatorial set theory, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 43–52. MR 1648055
  • 24. S. Todorcevic.
    Coherent sequences.
    In Handbook of Set Theory. North-Holland (forthcoming).
  • 25. John W. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies, no. 2, Princeton University Press, Princeton, N. J., 1940. MR 0002515
  • 26. Peter Vojtáš, Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 619–643. MR 1234291
  • 27. Phillip Zenor, Hereditary 𝔪-separability and the hereditary 𝔪-Lindelöf property in product spaces and function spaces, Fund. Math. 106 (1980), no. 3, 175–180. MR 584491, https://doi.org/10.4064/fm-106-3-175-180

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 54D20, 54D65, 03E02, 03E75, 54F15

Retrieve articles in all journals with MSC (2000): 54D20, 54D65, 03E02, 03E75, 54F15


Additional Information

Justin Tatch Moore
Affiliation: Department of Mathematics, Boise State University, Boise, Idaho 83725
Email: justin@math.boisestate.edu

DOI: https://doi.org/10.1090/S0894-0347-05-00517-5
Keywords: L space, negative partition relation, Tukey order, hereditarily Lindel\"of, non-separable, basis.
Received by editor(s): January 8, 2005
Published electronically: December 21, 2005
Additional Notes: The research presented in this paper was funded by NSF grant DMS–0401893.
Dedicated: This paper is dedicated to Stevo Todorcevic for teaching me how to traverse $𝜔_{1}$ and for his inspirational [23].
Article copyright: © Copyright 2005 American Mathematical Society