Integral points on elliptic curves and $3$-torsion in class groups
HTML articles powered by AMS MathViewer
- by H. A. Helfgott and A. Venkatesh;
- J. Amer. Math. Soc. 19 (2006), 527-550
- DOI: https://doi.org/10.1090/S0894-0347-06-00515-7
- Published electronically: January 19, 2006
- PDF | Request permission
Abstract:
We give new bounds for the number of integral points on elliptic curves. The method may be said to interpolate between approaches via diophantine techniques and methods based on quasi-orthogonality in the Mordell-Weil lattice. We apply our results to break previous bounds on the number of elliptic curves of given conductor and the size of the $3$-torsion part of the class group of a quadratic field. The same ideas can be used to count rational points on curves of higher genus.References
- A. Baker, The Diophantine equation $y^{2}=ax^{3}+bx^{2}+cx+d$, J. London Math. Soc. 43 (1968), 1–9. MR 231783, DOI 10.1112/jlms/s1-43.1.1
- B. Brindza, J.-H. Evertse, and K. Győry, Bounds for the solutions of some Diophantine equations in terms of discriminants, J. Austral. Math. Soc. Ser. A 51 (1991), no. 1, 8–26. MR 1119684, DOI 10.1017/S1446788700033267
- Armand Brumer and Kenneth Kramer, The rank of elliptic curves, Duke Math. J. 44 (1977), no. 4, 715–743. MR 457453
- E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), no. 2, 337–357. MR 1016893, DOI 10.1215/S0012-7094-89-05915-2
- Armand Brumer and Joseph H. Silverman, The number of elliptic curves over $\mathbf Q$ with conductor $N$, Manuscripta Math. 91 (1996), no. 1, 95–102. MR 1404420, DOI 10.1007/BF02567942
- Yann Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math. 107 (1997), no. 2, 187–219. MR 1458749, DOI 10.1023/A:1000130114331
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- Sinnou David, Points de petite hauteur sur les courbes elliptiques, J. Number Theory 64 (1997), no. 1, 104–129 (French, with English and French summaries). MR 1450488, DOI 10.1006/jnth.1997.2100
- W. Duke, Bounds for arithmetic multiplicities, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 163–172. MR 1648066
- W. Duke and E. Kowalski, A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, Invent. Math. 139 (2000), no. 1, 1–39. With an appendix by Dinakar Ramakrishnan. MR 1728875, DOI 10.1007/s002229900017
- Noam D. Elkies, Rational points near curves and small nonzero $|x^3-y^2|$ via lattice reduction, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 33–63. MR 1850598, DOI 10.1007/10722028_{2} [EV]EV Ellenberg, J. and A. Venkatesh, On uniform bounds for rational points on non-rational curves. IMRN 35 (2005).
- J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to $Y^n=f(X)$, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 2, 237–248. MR 848850, DOI 10.1017/S0305004100066068
- É. Fouvry, Sur le comportement en moyenne du rang des courbes $y^2=x^3+k$, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 61–84 (French). MR 1263524
- Robert Gross and Joseph Silverman, $S$-integer points on elliptic curves, Pacific J. Math. 167 (1995), no. 2, 263–288. MR 1328329, DOI 10.2140/pjm.1995.167.263
- L. Hajdu and T. Herendi, Explicit bounds for the solutions of elliptic equations with rational coefficients, J. Symbolic Comput. 25 (1998), no. 3, 361–366. MR 1615334, DOI 10.1006/jsco.1997.0181
- Helmut Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), no. 1, 565–582 (German). MR 1545136, DOI 10.1007/BF01246435
- D. R. Heath-Brown, The density of rational points on curves and surfaces, Ann. of Math. (2) 155 (2002), no. 2, 553–595. MR 1906595, DOI 10.2307/3062125
- H. A. Helfgott, On the square-free sieve, Acta Arith. 115 (2004), no. 4, 349–402. MR 2099831, DOI 10.4064/aa115-4-3 [Her]Her Herrmann, E., Bestimmung aller $S$-ganzen Lösungen auf elliptischen Kurven, Ph.D. thesis, Universität des Saarlandes.
- Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599, DOI 10.1007/978-1-4612-1210-2
- G. A. Kabatjanskiĭ and V. I. Levenšteĭn, Bounds for packings on the sphere and in space, Problemy Peredači Informacii 14 (1978), no. 1, 3–25 (Russian). MR 514023
- S. V. Kotov and L. A. Trelina, $S$-ganze Punkte auf elliptischen Kurven, J. Reine Angew. Math. 306 (1979), 28–41 (German). MR 524645
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817, DOI 10.1007/978-3-662-07010-9
- Vladimir I. Levenshtein, Universal bounds for codes and designs, Handbook of coding theory, Vol. I, II, North-Holland, Amsterdam, 1998, pp. 499–648. MR 1667942
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. MR 444670, DOI 10.1007/BF01389815
- Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449 (French). MR 1369424, DOI 10.1007/s002220050059
- David Mumford, A remark on Mordell’s conjecture, Amer. J. Math. 87 (1965), 1007–1016. MR 186624, DOI 10.2307/2373258
- M. Ram Murty, Exponents of class groups of quadratic fields, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 229–239. MR 1691322
- Jan Nekovář, Class numbers of quadratic fields and Shimura’s correspondence, Math. Ann. 287 (1990), no. 4, 577–594. MR 1066816, DOI 10.1007/BF01446915
- L. B. Pierce, The 3-part of class numbers of quadratic fields, J. London Math. Soc. (2) 71 (2005), no. 3, 579–598. MR 2132372, DOI 10.1112/S002461070500637X
- Ákos Pintér, On the magnitude of integer points on elliptic curves, Bull. Austral. Math. Soc. 52 (1995), no. 2, 195–199. MR 1348477, DOI 10.1017/S000497270001460X
- Wolfgang M. Schmidt, Integer points on curves of genus $1$, Compositio Math. 81 (1992), no. 1, 33–59. MR 1145607 [Sch]scholz Scholz, A., Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. Reine Angew. Math. 166 (1932), 201–203.
- Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, 3rd ed., Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt; With a foreword by Brown and Serre. MR 1757192, DOI 10.1007/978-3-663-10632-6
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- Takuro Shintani, On Dirichlet series whose coefficients are class numbers of integral binary cubic forms, J. Math. Soc. Japan 24 (1972), 132–188. MR 289428, DOI 10.2969/jmsj/02410132
- Carl Ludwig Siegel, Lectures on the geometry of numbers, Springer-Verlag, Berlin, 1989. Notes by B. Friedman; Rewritten by Komaravolu Chandrasekharan with the assistance of Rudolf Suter; With a preface by Chandrasekharan. MR 1020761, DOI 10.1007/978-3-662-08287-4
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), no. 192, 723–743. MR 1035944, DOI 10.1090/S0025-5718-1990-1035944-5
- Joseph H. Silverman, Lower bound for the canonical height on elliptic curves, Duke Math. J. 48 (1981), no. 3, 633–648. MR 630588
- Joseph H. Silverman, Lower bounds for height functions, Duke Math. J. 51 (1984), no. 2, 395–403. MR 747871, DOI 10.1215/S0012-7094-84-05118-4
- Joseph H. Silverman, A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves, J. Reine Angew. Math. 378 (1987), 60–100. MR 895285, DOI 10.1515/crll.1987.378.60
- K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields, J. London Math. Soc. (2) 61 (2000), no. 3, 681–690. MR 1766097, DOI 10.1112/S0024610700008887
- Siman Wong, Automorphic forms on $\textrm {GL}(2)$ and the rank of class groups, J. Reine Angew. Math. 515 (1999), 125–153. MR 1717617, DOI 10.1515/crll.1999.075
- Siman Wong, On the rank of ideal class groups, Number theory (Ottawa, ON, 1996) CRM Proc. Lecture Notes, vol. 19, Amer. Math. Soc., Providence, RI, 1999, pp. 377–383. MR 1684617, DOI 10.1090/crmp/019/33
Bibliographic Information
- H. A. Helfgott
- Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06520
- Address at time of publication: Département de mathématiques et de statistique, Université de Montréal, CP 6128 succ Centre-Ville, Montréal QC H3C 3J7, Canada
- MR Author ID: 644718
- Email: helfgott@dms.umontreal.ca
- A. Venkatesh
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139–4307
- Address at time of publication: Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
- MR Author ID: 693009
- Email: akshay@ias.edu
- Received by editor(s): May 21, 2004
- Published electronically: January 19, 2006
- Additional Notes: The second author was supported in part by NSF grant DMS-0245606.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 527-550
- MSC (2000): Primary 11G05, 11R29; Secondary 14G05, 11R11
- DOI: https://doi.org/10.1090/S0894-0347-06-00515-7
- MathSciNet review: 2220098