Quasisymmetric groups
HTML articles powered by AMS MathViewer
- by Vladimir Markovic;
- J. Amer. Math. Soc. 19 (2006), 673-715
- DOI: https://doi.org/10.1090/S0894-0347-06-00518-2
- Published electronically: January 25, 2006
- PDF | Request permission
Abstract:
One of the first problems in the theory of quasisymmetric and convergence groups was to investigate whether every quasisymmetric group that acts on the sphere $\textbf {S}^{n}$, $n>0$, is a quasisymmetric conjugate of a Möbius group that acts on $\textbf {S}^{n}$. This was shown to be true for $n=2$ by Sullivan and Tukia, and it was shown to be wrong for $n>2$ by Tukia. It also follows from the work of Martin and of Freedman and Skora. In this paper we settle the case of $n=1$ by showing that any $K$-quasisymmetric group is $K_1$-quasisymmetrically conjugated to a Möbius group. The constant $K_1$ is a function $K$.References
- William Abikoff, Clifford J. Earle, and Sudeb Mitra, Barycentric extensions of monotone maps of the circle, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 1–20. MR 2145053, DOI 10.1090/conm/355/06442
- Brian H. Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), no. 3, 643–667. MR 1602069, DOI 10.1090/S0894-0347-98-00264-1
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), no. 1-2, 23–48. MR 857678, DOI 10.1007/BF02392590 e-m D. Epstein, V. Markovic, Extending homeomorphisms of the circle to quasiconformal homeomorphisms of the disc, Warwick preprints (2004).
- D. B. A. Epstein, A. Marden, and V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305–336. MR 2052356, DOI 10.4007/annals.2004.159.305
- Michael H. Freedman and Richard Skora, Strange actions of groups on spheres, J. Differential Geom. 25 (1987), no. 1, 75–98. MR 873456
- David Gabai, Convergence groups are Fuchsian groups, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 395–402. MR 1102752, DOI 10.1090/S0273-0979-1991-16082-9
- F. W. Gehring and G. J. Martin, Discrete quasiconformal groups. I, Proc. London Math. Soc. (3) 55 (1987), no. 2, 331–358. MR 896224, DOI 10.1093/plms/s3-55_{2}.331
- F. W. Gehring and G. J. Martin, Discrete convergence groups, Complex analysis, I (College Park, Md., 1985–86) Lecture Notes in Math., vol. 1275, Springer, Berlin, 1987, pp. 158–167. MR 922298, DOI 10.1007/BFb0078350
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- Zheng-Xu He and Oded Schramm, Fixed points, Koebe uniformization and circle packings, Ann. of Math. (2) 137 (1993), no. 2, 369–406. MR 1207210, DOI 10.2307/2946541
- Juha Heinonen and Pekka Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), no. 1, 61–79. MR 1323982, DOI 10.1007/BF01241122
- A. Hinkkanen, Uniformly quasisymmetric groups, Proc. London Math. Soc. (3) 51 (1985), no. 2, 318–338. MR 794115, DOI 10.1112/plms/s3-51.2.318
- A. Hinkkanen, Abelian and nondiscrete convergence groups on the circle, Trans. Amer. Math. Soc. 318 (1990), no. 1, 87–121. MR 1000145, DOI 10.1090/S0002-9947-1990-1000145-X
- A. Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc. 83 (1990), no. 422, iv+87. MR 948926, DOI 10.1090/memo/0422
- Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR 1177168 k-s-s O. Kozlovski, W. Shen, S. van Strien, Density of hyperbolicity in dimension one, Warwick preprints (2003).
- Gaven J. Martin, Discrete quasiconformal groups that are not the quasiconformal conjugates of Möbius groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 11 (1986), no. 2, 179–202. MR 853955, DOI 10.5186/aasfm.1986.1113
- Gaven J. Martin and Pekka Tukia, Convergence and Möbius groups, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 113–140. MR 955836, DOI 10.1007/978-1-4613-9611-6_{9}
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7 sm D. Smania, Puzzle geometry and rigidity, preprint (2002).
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., No. 97, Princeton Univ. Press, Princeton, NJ, 1981, pp. 465–496. MR 624833
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321
- Pekka Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 73–78. MR 595178, DOI 10.5186/aasfm.1980.0530
- Pekka Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 149–160. MR 639972, DOI 10.5186/aasfm.1981.0625
- Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1–54. MR 961162, DOI 10.1515/crll.1988.391.1
Bibliographic Information
- Vladimir Markovic
- Affiliation: University of Warwick, Institute of Mathematics, Coventry CV4 7AL, United Kingdom
- Email: markovic@maths.warwick.ac.uk
- Received by editor(s): December 15, 2004
- Published electronically: January 25, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 673-715
- MSC (2000): Primary 20H10, 37F30
- DOI: https://doi.org/10.1090/S0894-0347-06-00518-2
- MathSciNet review: 2220103