Fuglede–Kadison determinants and entropy for actions of discrete amenable groups
HTML articles powered by AMS MathViewer
- by Christopher Deninger;
- J. Amer. Math. Soc. 19 (2006), 737-758
- DOI: https://doi.org/10.1090/S0894-0347-06-00519-4
- Published electronically: February 6, 2006
- PDF | Request permission
Abstract:
In 1990, Lind, Schmidt, and Ward gave a formula for the entropy of certain $\mathbb {Z}^n$-dynamical systems attached to Laurent polynomials $P$, in terms of the (logarithmic) Mahler measure of $P$. We extend the expansive case of their result to the noncommutative setting where $\mathbb {Z}^n$ gets replaced by suitable discrete amenable groups. Generalizing the Mahler measure, Fuglede–Kadison determinants from the theory of group von Neumann algebras appear in the entropy formula.References
- David W. Boyd, Mahler’s measure and special values of $L$-functions, Experiment. Math. 7 (1998), no. 1, 37–82. MR 1618282, DOI 10.1080/10586458.1998.10504357
- David W. Boyd, Mahler’s measure and invariants of hyperbolic manifolds, Number theory for the millennium, I (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 127–143. MR 1956222
- Christopher Deninger, Deligne periods of mixed motives, $K$-theory and the entropy of certain $\textbf {Z}^n$-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259–281. MR 1415320, DOI 10.1090/S0894-0347-97-00228-2
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 458185
- Gábor Elek, Amenable groups, topological entropy and Betti numbers, Israel J. Math. 132 (2002), 315–335. MR 1952628, DOI 10.1007/BF02784519
- Bent Fuglede and Richard V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520–530. MR 52696, DOI 10.2307/1969645
- Rostislav I. Grigorchuk, On growth in group theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 325–338. MR 1159221
- Yitzhak Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. MR 2039503, DOI 10.1017/CBO9781139165372
- Horst Leptin, On one-sided harmonic analysis in noncommutative locally compact groups, J. Reine Angew. Math. 306 (1979), 122–153. MR 524651, DOI 10.1515/crll.1979.306.122
- Horst Leptin and Detlev Poguntke, Symmetry and nonsymmetry for locally compact groups, J. Functional Analysis 33 (1979), no. 2, 119–134. MR 546502, DOI 10.1016/0022-1236(79)90107-1
- Douglas Lind, Lehmer’s problem for compact abelian groups, Proc. Amer. Math. Soc. 133 (2005), no. 5, 1411–1416. MR 2111966, DOI 10.1090/S0002-9939-04-07753-6
- Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI 10.1007/BF01231517
- Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24. MR 1749670, DOI 10.1007/BF02810577
- V. Losert, A characterization of groups with the one-sided Wiener property, J. Reine Angew. Math. 331 (1982), 47–57. MR 647373, DOI 10.1515/crll.1982.331.47
- W. Lück, Approximating $L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455–481. MR 1280122, DOI 10.1007/BF01896404
- Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649, DOI 10.1007/978-3-662-04687-6
- Jean Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Mathematics, vol. 1115, Springer-Verlag, Berlin, 1985. MR 781932, DOI 10.1007/BFb0101575
- Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1–141. MR 910005, DOI 10.1007/BF02790325
- Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261, DOI 10.1090/surv/029
- Thomas Schick, $L^2$-determinant class and approximation of $L^2$-Betti numbers, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3247–3265. MR 1828605, DOI 10.1090/S0002-9947-01-02699-X
- Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
- Rita Solomyak, On coincidence of entropies for two classes of dynamical systems, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 731–738. MR 1631756, DOI 10.1017/S0143385798108313
- Norbert Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1–100. MR 1503035, DOI 10.2307/1968102
- Kôsaku Yosida, Functional analysis, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR 350358, DOI 10.1007/978-3-642-96208-0
Bibliographic Information
- Christopher Deninger
- Affiliation: Mathematisches Institut, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
- MR Author ID: 56735
- Email: c.deninger@math.uni-muenster.de
- Received by editor(s): April 11, 2005
- Published electronically: February 6, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 737-758
- MSC (2000): Primary 22D25, 37A35, 37B40, 46Lxx
- DOI: https://doi.org/10.1090/S0894-0347-06-00519-4
- MathSciNet review: 2220105