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HEEGAARD SURFACES AND MEASURED LAMINATIONS, II:
NON-HAKEN 3–MANIFOLDS

TAO LI

1. Introduction

A Heegaard splitting of a closed orientable 3–manifold is said to be reducible
if there is an essential simple closed curve in the Heegaard surface bounding disks
in both handlebodies. Haken proved that a Heegaard splitting of a reducible 3–
manifold is always reducible [9].

The classification of irreducible Heegaard splittings has been a long-standing
fundamental problem in 3–manifold topology. Such classification has been achieved
for certain non-hyperbolic manifolds, such as S3 by Waldhausen [32], Lens spaces
by Bonahon and Otal [3], and Seifert fiber spaces in [2, 22, 23]. The main theorem
of this paper is a finiteness result for non-Haken 3–manifolds.

Theorem 1.1. A closed orientable non-Haken 3–manifold has only finitely many
irreducible Heegaard splittings, up to isotopy.

An important question in the study of Heegaard splittings is whether there are
ways to construct different Heegaard splittings. By adding trivial handles, one
can always construct an infinite family of Heegaard splittings for every 3–manifold.
Theorem 1.1 says that, for irreducible non-Haken manifolds, adding trivial handles
is virtually the only way of obtaining new Heegaard splittings.

The study of Heegaard splitting has been dramatically changed since Casson and
Gordon introduced the notion of strongly irreducible Heegaard splitting [4]. They
showed that [4] an irreducible Heegaard splitting of a non-Haken 3–manifold is also
strongly irreducible. Using the thin-position argument, Rubinstein established re-
lations between strongly irreducible Heegaard splittings and normal surface theory.
The results in [4] have also been used to attack the virtually Haken conjecture
[14, 19].

Casson and Gordon found the first 3–manifolds containing infinitely many dif-
ferent irreducible Heegaard splittings (see [5, 30, 13]), and Theorem 1.1 says that
this can only happen in Haken 3–manifolds. In Section 7, we will show the re-
lation between an incompressible surface and the infinite family of strongly irre-
ducible Heegaard splittings in the Casson-Gordon example. This interpretation
of the Casson-Gordon example was independently discovered in [24], where the
authors proved a special case of the theorem.
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A conjecture of Waldhausen [33] says that a closed orientable 3–manifold has
only finitely many minimal/reducible Heegaard splittings, up to homeomorphism
(or even isotopy). This is known to be false because of the Casson-Gordon example.
A modified version of this conjecture is the so-called generalized Waldhausen con-
jecture, which says that an irreducible and atoroidal 3–manifold has only finitely
many Heegaard splittings in each genus, up to isotopy. Johannson [11, 12] proved
the generalized Waldhausen conjecture for Haken 3–manifolds. Together with Jo-
hannson’s theorem, Theorem 1.1 implies the generalized Waldhausen conjecture.
Moreover, Theorem 1.1 says that the original version of the Waldhausen conjecture
is true for non-Haken 3–manifolds.

Another important question in the study of Heegaard splittings is how different
Heegaard splittings are related. This is the so-called stabilization problem, asking
the number of stabilizations required to make two Heegaard splittings equivalent.
It has been shown that the number of stabilizations is bounded by a linear function
of the genera of the two splittings [28], but it remains unknown whether there is a
universal bound. We hope the techniques used in this paper can shed some light
on this question. Corollary 1.2 follows from Theorem 1.1 and [28].

Corollary 1.2. For any closed, orientable, irreducible and non-Haken 3–manifold
M , there is a number N such that any two Heegaard splittings of M are equivalent
after at most N stabilizations.

We briefly describe the main ideas of the proof. The basic idea is similar in spirit
to the proof of [16]. By [9, 4, 2, 3, 22, 23], we may assume M is irreducible, atoroidal
and not a small Seifert fiber space, and the Heegaard splittings are strongly irre-
ducible. By a theorem in [18], there is a finite collection of branched surfaces in M
such that every strongly irreducible Heegaard surface is fully carried by a branched
surface in this collection. Moreover, the branched surfaces in this collection have
some remarkable properties, such as that they do not carry any normal 2–sphere or
normal torus. Each surface carried by a branched surface corresponds to an integer
solution to the system of branch equations [6]. One can also define the projective
lamination space for a branched surfaces; see [18]. If a branched surface in this
collection carries an infinite number of strongly irreducible Heegaard surfaces, then
we have an infinite sequence of points in the projective lamination space. By com-
pactness, there must be an accumulation point which corresponds to a measured
lamination µ. The main task is to prove that µ is incompressible and hence yields
a closed incompressible surface, contradicting the hypothesis that M is non-Haken.
The proof utilizes properties of both strongly irreducible Heegaard splittings and
measured laminations.

We organize this paper as follows. In Section 2, we briefly review some results
from [18] and show some relations between branched surfaces and strongly irre-
ducible Heegaard splittings. In Sections 3 and 4, we prove some technical lemmas
concerning measured laminations. In Section 5, we explain a key construction. We
finish the proof of Theorem 1.1 in Section 6. In Section 7, we show how to inter-
pret the limit of the infinite family of strongly irreducible Heegaard surfaces in the
Casson-Gordon example.

2. Heegaard surfaces and branched surfaces

Notation. Throughout this paper, we will denote the interior of X by int(X), the
closure (under path metric) of X by X, and the number of components of X by
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|X|. We will also use |n| to denote the absolute value of n if n is a number. We
will use η(X) to denote the closure of a regular neighborhood of X. We will also
use the same notations on branched surfaces and laminations as in Sections 2 and
3 of [18].

Let M be a closed orientable and non-Haken 3–manifold. A theorem of Haken [9]
says that a reducible 3–manifold cannot have any irreducible Heegaard splitting.
By [2, 3, 22, 23], Theorem 1.1 is true for small Seifert fiber spaces. So we may
assume M is irreducible and not a small Seifert fiber space. Casson and Gordon [4]
showed that irreducible Heegaard splittings are equivalent to strongly irreducible
Heegaard splittings for non-Haken 3–manifolds. Hence we assume the Heegaard
splittings in this paper are strongly irreducible. We call the Heegaard surface of a
strongly irreducible splitting a strongly irreducible Heegaard surface.

By [27, 31], each strongly irreducible Heegaard surface is isotopic to an almost
normal surface with respect to a triangulation. Similar to [6], we can use normal
disks and almost normal pieces to construct a finite collection of branched surfaces
such that each strongly irreducible Heegaard surface is fully carried by a branched
surface in this collection. By a theorem of [18] (Theorem 2.1 below), we can split
these branched surfaces into a larger collection of branched surfaces so that each
strongly irreducible Heegaard surface is still fully carried by a branched surface in
this collection and no branched surface in this collection carries any normal 2–sphere
or normal torus.

Theorem 2.1 (Theorem 1.3 in [18]). Let M be a closed orientable irreducible and
atoroidal 3–manifold, and suppose M is not a Seifert fiber space. Then M has a
finite collection of branched surfaces, such that

(1) each branched surface in this collection is obtained by gluing together normal
disks and at most one almost normal piece with respect to a fixed triangu-
lation, similar to [6],

(2) up to isotopy, each strongly irreducible Heegaard surface is fully carried by
a branched surface in this collection,

(3) no branched surface in this collection carries any normal 2–sphere or nor-
mal torus.

Our goal is to prove that each branched surface in Theorem 2.1 only carries a
finite number of strongly irreducible Heegaard surfaces. We will use various prop-
erties of strongly irreducible Heegaard splittings, branched surfaces and measured
laminations, and we refer to Sections 2 and 3 of [18] for an overview of some results
and techniques in these areas. In this section, we prove some easy lemmas which
establish some connections between branched surfaces and Heegaard surfaces.

Let B be a branched surface, N(B) a fibered neighborhood of B, and π : N(B) →
B the map collapsing each I–fiber of N(B) to a point. We say an annulus A =
S1 × I ⊂ N(B) is a vertical annulus if every {x}× I ⊂ A (x ∈ S1) is a subarc of an
I–fiber of N(B). We say a surface Γ is carried by N(B) if Γ ⊂ N(B) is transverse
to the I–fibers of N(B).

Proposition 2.2. Let B be a branched surface and A ⊂ N(B) an embedded vertical
annulus. Suppose there is an embedded annulus Γ carried by N(B) such that ∂Γ ⊂ A
and int(Γ) ∩ A is an essential closed curve in Γ. Then B carries a torus.

Proof. First note that if B carries a Klein bottle K, then the boundary of a twisted
I–bundle over K is a torus carried by B. The idea of the proof is that one can



628 TAO LI

Figure 2.1.

perform some cutting and pasting on A and Γ to get a torus (or Klein bottle)
carried by B. The circle int(Γ) ∩ A cuts Γ into 2 sub-annuli, say Γ1 and Γ2, with
int(Γi) ∩ A = ∅ (i = 1, 2). Let Ai be the sub-annulus of A bounded by ∂Γi. So
Ai ∪ Γi is an embedded torus (or Klein bottle). We have two cases here. The
first case is that Γi connects A from different sides, more precisely, after a small
perturbation, the torus (or Klein bottle) Ai ∪ Γi is transverse to the I–fibers of
N(B), as shown in Figure 2.1(a). The second case is that both Γ1 and Γ2 connect
A from the same side. Then as shown in Figure 2.1(b), (c), we can always use the
annuli Γi and Ai to assemble a torus (or Klein bottle) carried by B. �

The following lemma is a variation of Lemma 2.2 in [29] and the proof is similar.

Lemma 2.3. Let M = H1 ∪S H2 be a strongly irreducible Heegaard splitting, S
the Heegaard surface, and D an embedded disk in M with ∂D ⊂ S. Suppose D is
transverse to S and int(D)∩S is a single circle γ. Let D1 ⊂ D be the disk bounded
by γ, and suppose D1 ⊂ H1 is a compressing disk of the handlebody H1. Then the
annulus A = D − int(D1) must be ∂–parallel in the handlebody H2.

Proof. Since S is strongly irreducible, γ does not bound a disk in H2. So A is incom-
pressible in H2, and hence A is ∂–compressible. Let E ⊂ H2 be a ∂–compressing
disk for the annulus A = D− int(D1). We may suppose ∂E consists of two arcs, α
and β, where α ⊂ A is an essential arc in A, β ⊂ S and ∂α = ∂β ⊂ ∂A.

Now we compress A along E; in other words, we perform a simple surgery,
replacing a small neighborhood of α in A by two parallel copies of E. The resulting
surface is a disk properly embedded in H2. We denote this disk by D2. After a
small perturbation, we may assume ∂D2 is disjoint from ∂D1. Since M = H1∪S H2

is a strongly irreducible Heegaard splitting and D1 is a compressing disk in H1, D2

must be a ∂–parallel disk in H2. This implies that A is ∂–parallel in H2. �

The following lemma follows easily from Proposition 2.2 and Lemma 2.3.

Lemma 2.4. Let S be a strongly irreducible Heegaard surface fully carried by a
branched surface B, and suppose B does not carry any torus. Let A be an embedded
vertical annulus in N(B), and suppose A ∩ S =

⋃n
i=1 ci consists of n non-trivial

circles in S. If some ci bounds a compressing disk in one of the two handlebodies,
then there is a number K depending only on B such that n = |A ∩ S| < K.
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Proof. Suppose M = H1∪S H2 is the Heegaard splitting. Let Ai be the sub-annulus
of A bounded by ci∪ci+1, and we may assume Ai is properly embedded in H1 if i is
odd and in H2 if i is even. Without loss of generality, we may suppose c1 bounds a
compressing disk in a handlebody. Note that the argument works fine if one starts
with an arbitrary ci rather than c1.

If c1 bounds a compressing disk in H2, since c1 ∪ c2 bounds an annulus A1 in
H1, by Lemma 2.3, A1 is ∂–parallel in H1. By pushing A1 into H2, we have that
c2 bounds a disk in H2. Since A2 lies in H2, the union of A2 and the disk bounded
by c2 in H2 is a disk bounded by c3. Since each ci is non-trivial in S, c3 bounds a
compressing disk in H2. Again, since A3 lies in H1, by Lemma 2.3, A3 is ∂–parallel
in H1. Inductively, we conclude that A2k+1 is ∂–parallel in H1 for each k. So for
each k, there is an annulus Γk ⊂ S such that ∂Γk = ∂A2k+1 and A2k+1∪Γk bounds
a solid torus Tk in H1. It is clear that any two such solid tori Ti and Tj are either
disjoint or nested.

Suppose Ti and Tj are nested, say Ti ⊂ Tj . Hence Γi ⊂ Γj and ∂A2i+1 ⊂ Γj .
Note that Γj ⊂ S is an annulus carried by N(B) and ∂A2i+1 ⊂ Γj ∩ A, so a sub-
annulus of Γj satisfies the hypotheses of Proposition 2.2. Hence B must carry a
torus, contradicting our hypotheses. Thus, the solid tori Ti’s are pairwise disjoint.
Note that ∂Ti ⊂ N(B) but the solid torus Ti is not contained in N(B), since
Ak ⊂ A ⊂ N(B) is a vertical annulus. So each solid torus Ti must contain a
component of ∂hN(B), and hence the number of such solid tori is bounded by the
number of components of ∂hN(B). Therefore, there is a number K depending only
on B such that n = |A ∩ S| < K.

If c1 bounds a compressing disk in H1, since c1 ∪ c2 bounds the annulus A1 in
H1, c2 bounds a compressing disk in H1. As A2 is an annulus in H2, by Lemma 2.3,
we have that A2 is ∂–parallel in H2. Using the same argument, we can inductively
conclude that A2k is ∂–parallel in H2 for each k and obtain such a bound K on
n = |A ∩ S|. �

The following proposition for branched surfaces is well known; see also [6, 1].

Proposition 2.5. Let B be a branched surface in M . Suppose M−B is irreducible
and ∂hN(B) is incompressible in M − int(N(B)). Let C be a component of M −
int(N(B)) and suppose C contains a monogon. Then C must be a solid torus in
the form of D × S1, where D is a monogon.

Proof. Let D be a monogon in C; i.e., the disk D is properly embedded in C,
∂D consists of two arcs, α ⊂ ∂vN(B) and β ⊂ ∂hN(B), and α is a vertical arc
in ∂vN(B). Let v be the component of ∂vN(B) containing α. Then as shown in
Figure 5.3(a), the union of two parallel copies of D and a rectangle in v is a disk E
properly embedded in C, with ∂E ⊂ ∂hN(B). Since ∂hN(B) is incompressible in
M − int(N(B)), ∂E must bound a disk in ∂hN(B)∩ ∂C. Since C is irreducible, C
must be a solid torus in the form of D × S1, where D is the monogon above. �

Before we proceed, we quote two results of Scharlemann that we will use later.

Lemma 2.6 (Lemma 2.2 of [29]). Suppose H1 ∪S H2 is a strongly irreducible Hee-
gaard splitting of a 3–manifold M and F is a disk in M transverse to S with
∂F ⊂ S. Then ∂F bounds a disk in some Hi.

Theorem 2.7 (Theorem 2.1 of [29]). Suppose H1 ∪S H2 is a strongly irreducible
Heegaard splitting of a 3–manifold M and B is a 3–ball in M . Let Ti be the planar
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surface ∂B ∩ Hi properly embedded in Hi, and suppose Ti is incompressible in Hi.
Then S ∩ B is connected and ∂–parallel in B.

Corollary 2.8 follows trivially from Scharlemann’s theorem.

Corollary 2.8. Suppose H1 ∪S H2 is a strongly irreducible Heegaard splitting of
a 3–manifold. Let P be a planar surface properly embedded in H1. Suppose P is
incompressible in H1 and each boundary component of P bounds a disk in H2. Then
P is ∂–parallel in H1.

3. Measured laminations

The purpose of this section is to prove Lemma 3.7, which is an easy consequence
of some properties of laminations and results from [18].

The following theorem is one of the fundamental results in the theory of measured
laminations and foliations. It also plays an important role in [18]. An exceptional
minimal lamination is a lamination in which every leaf is dense, and the intersection
of any transversal with such a lamination is a Cantor set; see Section 3 of [18].

Theorem 3.1 (Theorem 3.2 in Chapter I of [21], p. 410). Let µ be a co-dimension
one measured lamination in a closed connected 3–manifold M , and suppose µ �= M .
Then µ is the disjoint union of a finite number of sub-laminations. Each of these
sub-laminations is of one of the following types:

(1) a family of parallel compact leaves,
(2) a twisted family of compact leaves,
(3) an exceptional minimal measured lamination.

Definition 3.2 (Definition 4.2 of [18]). Let µ be a lamination in M and l0 a leaf
of µ. We call a simple closed curve f0 : S1 → l0 an embedded vanishing cycle in µ if
f0 extends to an embedding F : [0, 1]×S1 → M satisfying the following properties.

(1) F−1(µ) = C × S1, where C is a closed set of [0, 1], and for any t ∈ C, the
curve ft(S1), defined by ft(x) = F (t, x), is contained in a leaf lt.

(2) For any x ∈ S1, the curve t → F (t, x) is transverse to µ.
(3) f0 is an essential curve in l0, but there is a sequence of points {tn} in C

such that limn→∞ tn = 0 and ftn
(S1) bounds a disk in ltn

for all tn.

The following lemma from [18] will be useful in our proof of Lemma 3.7.

Lemma 3.3 (Lemma 4.3 of [18]). Let M be a closed orientable and irreducible
3–manifold and µ ⊂ M an exceptional minimal measured lamination. Suppose µ is
fully carried by a branched surface B and B does not carry any 2–sphere. Then µ
has no embedded vanishing cycle.

The proof of the follow lemma is similar in spirit to part of the proof of Lemma
4.5 in [18].

Lemma 3.4. Let B be a branched surface in a closed, orientable and irreducible
3–manifold M , and let M �= T 3. Suppose B does not carry any 2–sphere or torus,
and suppose B fully carries a measured lamination µ. Then µ does not contain any
plane leaf, infinite annular leaf or infinite Möbius band leaf.

Proof. By Theorem 3.1, we may assume µ is an exceptional minimal measured
lamination, in particular, every leaf is dense in µ.
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Suppose every leaf of µ is a plane. After trivially eliminating all the disks of
contact in N(B) that are disjoint from µ, we have that ∂hN(B) consists of disks.
So there is no monogon and µ is an essential lamination. By a theorem in [7] (also
see Proposition 4.2 of [15]), M ∼= T 3.

So at least one leaf of µ is not a plane. Let γ be an essential simple closed curve
in a non-plane leaf. Since µ is a measured lamination, there is no holonomy. So
there is an embedded vertical annulus S1 × I ⊂ N(B) such that γ ⊂ S1 × I and
µ ∩ (S1 × I) is a union of parallel circles. Suppose L is a plane leaf of µ. Since
every leaf is dense, L∩ (S1×I) contains infinitely many circles whose limit is γ. As
L is a plane, these circles bound disks in L. By Definition 3.2, γ is an embedded
vanishing cycle, and this contradicts Lemma 3.3. So µ does not contain any plane
leaf.

Suppose µ ⊂ N(B) and A is an infinite annular leaf (or an infinite Möbius band
leaf) of µ. Let γ be an essential simple closed curve in A. There is an embedded
vertical annulus S1 × I ⊂ N(B) such that γ ⊂ S1 × I, and µ ∩ (S1 × I) is a union
of parallel circles. Since every leaf is dense in µ, A ∩ (S1 × I) contains infinitely
many circles whose limit is γ. By Lemma 3.3, we may assume that only finitely
many circles of A ∩ (S1 × I) are trivial in A. So there exist three essential simple
closed curves in A ∩ (S1 × I), γi (i = 1, 2, 3), such that γ1 ∪ γ3 bounds a compact
sub-annulus Aγ in A with int(Aγ) ∩ (S1 × I) = γ2. By Proposition 2.2, B carries
a torus, contradicting our hypotheses. �
Lemma 3.5. Let B be a branched surface in M . Suppose N(B) does not contain
any disk of contact and ∂hN(B) has no disk component. Let λ ⊂ N(B) be a
lamination fully carried by N(B). Then every leaf of λ is π1–injective in the 3–
manifold N(B).

Proof. We may use the arguments in [8] to prove this lemma directly, but it is more
convenient to simply use a theorem of [8]. Since ∂hN(B) has no disk component,
no component of ∂N(B) is a 2–sphere. For each component S of ∂N(B), we
may glue to N(B) (along S) a compact orientable and irreducible 3–manifold MS ,
whose boundary ∂MS

∼= S is incompressible in MS . So we can obtain a closed
3–manifold M ′ this way with N(B) ⊂ M ′. Since S is π1–injective in MS , the
inclusion i : N(B) ↪→ M ′ induces an injection on π1.

If ∂hN(B) is compressible in M ′ − int(N(B)), then we have a compressing disk
D with ∂D ⊂ ∂hN(B) ∩ S, where S is a boundary component of N(B). As S
is incompressible in MS , ∂D must bound a disk E in S, which implies that E
contains a disk component of ∂hN(B), contradicting our hypotheses. So ∂hN(B)
must be incompressible in M ′ − int(N(B)). There is clearly no monogon by the
construction and no disk of contact by our hypotheses. Moreover, since ∂hN(B)
has no disk component and there is no monogon, it is easy to see that there is no
Reeb component for N(B). Therefore, by [8], λ is an essential lamination in the
closed manifold M ′, and every leaf of λ is π1–injective in M ′, hence π1–injective in
N(B). �

The following lemma from [18] is also useful in the proof of Lemma 3.7.

Lemma 3.6 (Lemma 4.1 of [18]). Let B be a branched surface fully carrying a
lamination µ. Suppose ∂hN(B) has no disk component and N(B) does not contain
any disk of contact that is disjoint from µ. Then N(B) does not contain any disk
of contact.
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Now, Lemma 3.7 follows easily from the previous lemmas.

Lemma 3.7. Let B be a branched surface in a closed, orientable and irreducible
3–manifold M . Suppose B does not carry any 2–sphere or torus and B fully carries
a measured lamination µ. Then B can be split into a branched surface B1 such that
B1 still fully carries µ, no component of ∂hN(B1) is a disk, and every leaf of µ is
π1–injective in N(B1).

Proof. By Theorem 3.1, we may assume that µ is an exceptional minimal measured
lamination. Since B does not carry any 2–sphere or torus, by Lemma 3.4, no leaf
of µ is a plane. After some isotopy, we may assume ∂hN(B) ⊂ µ. Hence we can
split N(B) so that each component of ∂hN(B) contains an essential curve of the
corresponding leaf. So no component of ∂hN(B) is a disk after the splitting.

By splitting N(B), we may trivially eliminate all the disks of contact that are
disjoint from µ. So, by Lemma 3.6, N(B) does not contain any disk of contact.
Now the lemma follows from Lemma 3.5. �

The following proposition is well known. It also plays a fundamental role in [16].

Proposition 3.8. Let M be a closed irreducible and orientable 3–manifold and B
a branched surface in M carrying a measured lamination µ. If µ is an essential
lamination, then B carries an incompressible surface and hence M is Haken.

Proof. By [8], if µ is an essential lamination, then one can split B into an incom-
pressible branched surface B′ that fully carries µ. Since µ is a measured lamination,
the system of branch equations for B′ must have a positive solution. Since the co-
efficients of each branch equation are integers, the system of branch equations must
have a positive integer solution. Thus B′ fully carries a closed orientable surface.
By [6], every closed surface fully carried by an incompressible branched surface is
incompressible. �

4. Limits of compact surfaces

Let B be a branched surface in a closed 3–manifold M , and let F ⊂ N(B) be a
closed surface carried by B. Then F corresponds to a non-negative integer solution
to the branch equations of B; see Section 3 of [18] for a brief explanation and see
[6, 25] for more details. We use S(B) ⊂ R

N to denote the set of non-negative
solutions to the branch equations of B, where N is the number of branch sectors
of B. There is a one-to-one correspondence between a closed surface carried by B
and an integer point in S(B). A surface is fully carried by B if and only if every
coordinate of the corresponding point in S(B) is positive.

Every point in S(B), integer point or non-integer point, corresponds to a mea-
sured lamination carried by B. Such a measured lamination µ can be viewed as
the inverse limit of a sequence of splittings {Bn}∞n=0, where B0 = B and Bi+1 is
obtained by splitting Bi. Note that if Bi+1 is obtained by splitting Bi, one may
naturally consider N(Bi+1) ⊂ N(Bi). We refer to Section 3 of [18] for a brief
description; see [25] and Section 3 of [10] for more details (also see Definition 4.1
and Lemma 4.2 of [8]). There is a one-to-one correspondence between each point
in S(B) and a measured lamination constructed in this fashion. This one-to-one
correspondence is slightly different from the one above for integer points of S(B).
For an integer point, the sequence of splittings on B above stops in a finite number
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of steps (i.e., Bi+1 = Bi is a closed surface if i is large), and the measured lami-
nation constructed this way is the horizontal foliation of an I–bundle over a closed
surface.

We define the projective lamination space of B, denoted by PL(B), to be the set
of points in S(B) satisfying

∑N
i=1 xi = 1. Let p : S(B)−{0} → PL(B) be the nat-

ural projection sending (x1, . . . , xN ) to 1
s (x1, . . . , xN ), where s =

∑N
i=1 xi. To sim-

plify notation, we do not distinguish a point x ∈ S(B) and its image p(x) ∈ PL(B)
unless necessary. PL(B) is a compact set. For any infinite sequence of distinct
closed surfaces carried by B, the images of the corresponding points in PL(B)
(under the map p) have an accumulation point, which corresponds to a measured
lamination µ. To simplify notation, we simply say that the measured lamination
µ is an accumulation point of this sequence of surfaces in PL(B). Throughout
this paper, when we consider a compact surface carried by B, we identify the sur-
face with an integer point in S(B), but when we consider µ as a limit point of
a sequence of compact surfaces in PL(B), we identify the point µ ∈ PL(B) to a
measured lamination as the inverse limit of the sequence of splittings on B above.

Proposition 4.1. Let B be a branched surface with n branch sectors and {Sk =
(x(k)

1 , . . . , x
(k)
n )} an infinite sequence of integer points in S(B) whose images in

PL(B) are distinct points. Suppose µ = (z1, . . . , zn) ∈ PL(B) is the limit point of
{Sk} in the projective lamination space. Let f(x1, . . . , xn) be a homogeneous linear
function with n variables. Then we have the following.

(1) If zi = 0 and zj �= 0, then limk→∞ x
(k)
i /x

(k)
j = 0.

(2) If zi > zj, then x
(k)
i > x

(k)
j if k is sufficiently large.

(3) If the sequence {f(Sk)} is bounded, then f(µ) = 0.

Proof. Let sk =
∑n

i=1 x
(k)
i . Then the corresponding point of Sk in PL(B) is [Sk] =

(x(k)
1 /sk, . . . , x

(k)
n /sk). By our hypotheses, limk→∞ x

(k)
i /sk = zi for each i. Thus,

if zi = 0 and zj �= 0, we have limk→∞ x
(k)
i /x

(k)
j = zi/zj = 0.

Since x
(k)
i /sk > x

(k)
j /sk is equivalent to x

(k)
i > x

(k)
j , part (2) is obvious.

Since f(x1, . . . , xn) is a homogeneous linear function, f([Sk]) = f(Sk)/sk and
limk→∞ f([Sk]) = f(µ). Since the sequence {Sk = (x(k)

1 , . . . , x
(k)
n )} consists of

distinct non-negative integer solutions, the integers {sk} are unbounded. So, after
passing to a sub-sequence if necessary, we have limk→∞ sk = ∞. Therefore, if the
sequence {f(Sk)} is bounded from above, then limk→∞ f(Sk)/sk = f(µ) = 0. �

Corollary 4.2. Let {Sk} ⊂ N(B) be a sequence of distinct compact connected
surfaces carried by a branched surface B. Suppose µ ⊂ N(B) is the measured
lamination corresponding to the limit of {Sk} in PL(B), and let K be an I–fiber of
N(B) such that K ∩µ �= ∅. Then, if k is large, |K ∩Sk|, the number of intersection
points of K and Sk, is large.

Proof. The number of intersection points of an I–fiber and Sk is equal to the integer
value of a coordinate of the corresponding point in S(B). So the corollary follows
immediately from part (3) of Proposition 4.1 after setting the linear function to
f(x1, . . . , xn) = xi, where xi corresponds to the branch sector of B that contains
the point π(K) (xi = |K ∩ Sk|). �
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Figure 4.1.

We call a lamination µ a normal lamination with respect to a triangulation if
every leaf of µ is a (possibly non-compact) normal surface.

Corollary 4.3. Let M be a closed 3–manifold with a fixed triangulation, and let
B be a branched surface obtained by gluing together a collection of normal disks
and at most one almost normal piece, similar to [6]. Suppose {Sn} is an infinite
sequence of distinct connected almost normal surfaces fully carried by B. Then
each accumulation point of {Sn} in PL(B) must correspond to a normal measured
lamination.

Proof. If B does not contain an almost normal piece, then every surface carried
by B is normal and there is nothing to prove. Suppose s is a branch sector of
B containing the almost normal piece. Since B fully carries an almost normal
surface, B − int(s) must be a sub-branched surface of B and every lamination
carried by B− int(s) is normal (B− int(s) is called the normal part of B in Section
2 of [18]). Suppose Sn = (x1, . . . , xN ) ∈ S(B) and suppose x1 is the coordinate
corresponding to the branch sector s. Since an almost normal surface has at most
one almost normal piece, x1 = 1 for each Sn. Suppose µ = (z1, . . . , zN ) ∈ PL(B).
By Proposition 4.1 and Corollary 4.2, z1 must be zero. Hence µ is carried by
B − int(s) and is a normal lamination. �

Now, we will use two examples to illustrate the limit of closed surfaces. Although
the two examples are train tracks, similar results hold for branched surfaces.

Example 4.4. Let τ be a train track in the plane as shown in Figure 4.1(a). There
are eight branch sectors in τ , and the branch equations are x1 + x4 = x3 = x2 + x6

and x7 + x4 = x5 = x8 + x6. Suppose {γn} is an infinite sequence of compact arcs
carried by τ whose limit in PL(τ ) is the point µ = (0, 0, 1/4, 1/4, 1/4, 1/4, 0, 0).
Geometrically µ is a measured lamination consisting of parallel circles carried by
τ . We identify γn with an integer point in S(τ ) and suppose the γn’s are different
points in S(τ ). Note that γn contains a circle if and only if x1 = x2 and x7 = x8. By
Proposition 4.1 and Corollary 4.2, as n tends to infinity, the values x6 and x6/x2 of
γn tend to infinity. This implies that, if n is large, γn contains either many parallel
circles or a spiral wrapping around the circle many times.

In the proof of the main theorem, we will consider the limit lamination µ of an
infinite sequence of almost normal Heegaard surfaces carried by a branched surface
B. The measured lamination µ is fully carried by a sub-branched surface B− of
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B. In many situations, we would like to split B− into a nicer branched surface
B−

1 . In fact, by considering µ ⊂ N(B−) ⊂ N(B), we can split N(B−) and N(B)
simultaneously and obtain µ ⊂ N(B−

1 ) ⊂ N(B1), such that B−
1 is the sub-branched

surface of B1 that fully carries µ, B1 is obtained by splitting B, and B1 still carries
an infinite sub-sequence of {Sn}. Next, we will use Example 4.5 to illustrate how the
local splittings work. We also formulate this fact in Proposition 4.6. Proposition 4.6
is similar in spirit to Lemma 6.1 of [18].

Example 4.5. Let τ be the train track on the top of Figure 4.2. As shown in
Figure 4.2, τ can be split into three different train tracks τ1, τ2 and τ3. Suppose µ
is a lamination fully carried by τ . Let x1, . . . , x5 be the weights of µ at the branch
sectors of τ . These xi’s satisfy the branch equations x1 + x3 = x5 = x2 + x4. It
is easy to see that x1 < x2 (resp. x1 > x2) if and only if µ is fully carried by τ1

(resp. τ3), and x1 = x2 if and only if µ is fully carried by τ2. Suppose {Sn} is an
infinite sequence of compact arcs carried by τ and suppose each Sn corresponds to
a different integer point in S(τ ). Suppose the limit of {Sn} in PL(τ ) is µ.

By part (2) of Proposition 4.1, if x1 < x2 (resp. x1 > x2) for µ, we can split τ
into τ1 (resp. τ3), and τ1 (resp. τ3) fully carries µ and an infinite sub-sequence of
{Sn}. Now, we consider the case x1 = x2 for µ. Although we can split τ (along µ)
into τ2 which fully carries µ, τ2 may not carry infinitely many Sn’s. Nonetheless, if
τ2 only carries finitely many Sn’s, then at least one of τ1 and τ2, say τ1, must carry
an infinite sub-sequence of {Sn}. Moreover, τ1 can be considered as the train track
obtained by adding a branch sector to τ2, and τ1 can be obtained by splitting τ .

Now we consider the splittings on branched surfaces. Note that any splitting
on a branched surface can be viewed as a sequence of successive local splittings,
and the operations of such local splittings on a branched surface are basically the
same as the splittings on the train track in Example 4.5. So we have the following
proposition.

Proposition 4.6. Let B be a branched surface and {Sn} ⊂ S(B) a sequence of
distinct compact surfaces carried by B. Suppose µ ∈ PL(B) is the limit point of
{Sn} in PL(B). Let B− be the sub-branched surface of B that fully carries µ. Let
B−

1 be any branched surface obtained by splitting B− along µ, and suppose B−
1 still

fully carries µ. Then one can add some branch sectors to B−
1 to form a branched

surface B1 (i.e., B−
1 is a sub-branched surface of B1), such that B1 can be obtained

by splitting B, and B1 carries an infinite sub-sequence of {Sn}.
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Proof. This proposition is similar in spirit to Lemma 6.1 of [18]. The splitting
from B− to B−

1 can be divided into a sequence of successive small local splittings,
and each local splitting is similar to the splittings in Example 4.5 and Figure 4.2.
During each local splitting, we can split B− and B simultaneously. If B fails to carry
infinitely many Sn’s after a local splitting, similar to the operation of obtaining τ1

by adding a branch sector to τ2 in Example 4.5, we can always add some branched
sectors to get a branched surface satisfying the requirements of the proposition. �

Remark 4.7. In Proposition 4.6, B−
1 is the sub-branched surface of B1 that fully

carries µ. Since any lamination carried by B1 is carried by B, it is easy to see that
µ ⊂ N(B1) is still the limit point in PL(B1) of the sub-sequence of {Sn} carried
by B1.

Remark 4.8. Let {Sn} be an infinite sequence of distinct closed surfaces carried by
N(B) whose limit in PL(B) is a measured lamination µ. Let γ be a simple closed
essential curve in a leaf of µ. If every I–fiber of N(B) intersects γ in at most one
point, then (after a slight enlargement) π−1(π(γ)) can be considered as a fibered
neighborhood of a train track consisting of a circle π(γ) and some “tails” along
the circle similar to Figure 4.1, where π : N(B) → B is the map collapsing each
I–fiber to a point. Since the limit of {Sn} is µ, π−1(π(γ)) ∩ Si (i = 1, 2, · · · ) is
a sequence of curves whose limit is a measured lamination containing the circle γ.
As in Example 4.4, if n is large, π−1(π(γ)) ∩ Sn must contain either many circles
parallel to γ or a spiral winding around γ many times. However, if there is an
I–fiber of N(B) intersecting γ in more than one point, then π(γ) is an immersed
curve in B. Nevertheless, since γ is an embedded essential curve in a leaf of µ,
by Theorem 3.1, after a finite sequence of splittings on B, we can get a branched
surface B1 such that B1 still carries µ and π|γ is injective, where π : N(B1) → B1

is the collapsing map, (i.e., every I–fiber of N(B1) intersects γ in at most one
point). Moreover, by Proposition 4.6, we may assume B1 still carries an infinite
sub-sequence of {Sn}. Now the situation is the same as above after replacing B by
B1.

The next lemma says that, if the branched surface is nice, then the limit of
trivial circles in a sequence of closed surfaces cannot be an essential circle in the
limit lamination.

Lemma 4.9. Let M be a closed 3–manifold with a fixed triangulation, and let B
be a branched surface obtained by gluing together a collection of normal disks and
at most one almost normal piece, as in Theorem 2.1. Suppose N(B) does not carry
any normal 2–sphere or normal torus. Let {Sn} be a sequence of distinct closed
almost normal surfaces fully carried by N(B) whose limit in PL(B) is a measured
lamination µ. Let γ be an essential simple closed curve in a leaf of µ. Then B can
be split into a branched surface B1 that carries both µ and an infinite sub-sequence
{Snk

} of {Sn}, such that, for any embedded vertical annulus A ⊃ γ in N(B1),
A∩ Snk

does not contain any circle that is trivial in the surface Snk
, for each Snk

.

Proof. Let Aγ be an embedded vertical annulus in N(B) containing γ. Suppose
Aγ ∩Sn contains a trivial circle in Sn for each n. Such a trivial circle bounds a disk
Dn in Sn. So Dn is transverse to the I–fibers of N(B) and with ∂Dn ⊂ Aγ . Let s
be the branch sector containing the almost normal piece, and let B′ = B − int(s)
be the sub-branched surface of B (B′ is called the normal part of B; see Section 2
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of [18]). By Corollary 4.3, µ is carried by B′. So we can assume that if Dn contains
an almost normal piece, the almost normal piece lies in int(Dn). Since Sn is an
almost normal surface, Dn contains at most one almost normal piece.

We call an isotopy of N(B) a B–isotopy, if the isotopy is invariant on each I–fiber
of N(B).

Claim. Up to B–isotopy, there are only finitely many such disks Dn.

To prove the claim, we first consider such disks that do not contain almost normal
pieces. If Dn does not contain an almost normal piece, then we may assume that Dn

lies in N(B′) transverse to the I–fibers of N(B′) and consider Aγ as an embedded
vertical annulus in N(B′). Let Sγ be the set of embedded compact surfaces F in
N(B′) with the properties that F is transverse to the I–fibers of N(B′) and ∂F is a
single circle in Aγ . Similar to S(B′), we can describe Sγ as the set of non-negative
integer solutions of a system of non-homogeneous linear equations as follows; see
[1] for such a description for disks of contact. Let L′ be the branch locus of B′ and
suppose π(Aγ) is an immersed curve in B′. Suppose b1, . . . , bN are the components
of B′ − L′ − π(Aγ). For each bi and any F ∈ Sγ , let xi = |F ∩ π−1(bi)|. One can
describe F using a non-negative integer point (x1, . . . , xN ) ∈ R

N , and (x1, . . . , xN )
is a solution of the system of (non-homogeneous) linear equations in the forms of
xk = xi + xj and xi = xj + 1. Equations like xi = xj + 1 occur when two pieces
are glued along π(Aγ), since π(∂F ) = π(Aγ). Up to B′–isotopy, there are only
finitely many surfaces corresponding to the same integer point in Sγ . Moreover,
the corresponding homogeneous system is exactly the system of branch equations
of B′. Suppose there is an infinite sequence of distinct disks {Dn} in Sγ . Then
one can find Di = (x1, . . . , xN ) and Dj = (y1, . . . , yN ) such that xk ≤ yk for each
k. Thus Dj − Di = (y1 − x1, . . . , yN − xN ) is a non-negative integer solution to
the corresponding homogeneous system, i.e., the system of branch equations. So
Dj−Di corresponds to a closed surface carried by B′. Since the Euler characteristic
is additive, χ(Dj−Di) = χ(Dj)−χ(Di) = 0. This means B′ carries a closed surface
(which may not be connected) with total Euler characteristic 0, which implies that
B′ must carry a connected surface with non-negative Euler characteristic. If B′

carries a Klein bottle (or projective plane), B′ must carry a torus (or 2–sphere)
because M is orientable. Since B′ = B − int(s), every surface carried by B′ is
normal. This contradicts the hypothesis that B does not carry any normal 2–sphere
or normal torus.

Suppose there is an infinite sequence of disks {Dn} from the Sn’s, such that each
Dn contains an almost normal piece. As above, we can also identify each Dn as
an integer solution of a system of non-homogeneous linear equations. Up to B–
isotopy, there are only finitely many such disks corresponding to the same integer
point. If the disks {Dn} correspond to different integer points, then one can find
Di = (x1, . . . , xK) and Dj = (y1, . . . , yK) such that xk ≤ yk for each k. Suppose
the first coordinate corresponds to the branch sector s that contains the almost
normal piece. Since each Sn is an almost normal surface, each Dn contains only
one almost normal piece. Hence, x1 = y1 = 1 and the first coordinate of Dj − Di

is y1 − x1 = 0. This means that Dj − Di does not contain an almost normal piece
and is carried by B′. Now the argument is the same as above. This finishes the
proof of the claim.

Let B− be the sub-branched surface of B fully carrying µ. As described earlier
in this section and in Section 3 of [18], we may consider µ as the inverse limit of
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an infinite sequence of splittings on B−. Suppose {B−
n }∞n=0 (B−

0 = B−) is such
a sequence of branched surfaces, with each B−

i obtained by splitting B−
i−1 and µ

being the inverse limit of the sequence {N(B−
n )}. Note that if µ consists of compact

leaves, then such splittings are a finite process. By Theorem 3.1, we only consider
the case that µ is an exceptional minimal measured lamination, and the proof for
the case that µ consists of compact leaves is similar. By Proposition 4.6, we may
assume there is a sequence of branched surfaces {Bn} (B0 = B) such that, for each
n, Bn+1 is obtained by splitting Bn, Bn carries µ and an infinite sub-sequence of
{Sn}, and B−

n is a sub-branched surface of Bn.
Let Ak ⊂ N(B−

k ) be a vertical annulus containing γ. By Lemma 3.7, after some
splittings, we may assume that if k is sufficiently large, every leaf of µ is π1–injective
in N(B−

k ). Since γ is an essential curve in a leaf, if k is sufficiently large, there is
no disk D in N(B−

k ) transverse to the I–fibers and with ∂D ⊂ Ak. Now, suppose
D ⊂ N(Bk) is a disk in Sn with ∂D ⊂ Ak. So D cannot be totally in N(B−

k ). If
µ∩D �= ∅ under any Bk–isotopy, since µ is the inverse limit of the infinite sequence
of splittings, these splittings {B−

k } will eventually cut through D. By the claim
above, there are only finitely many such disks D. So, if m is sufficiently large, there
is no such disk D ⊂ N(Bm) with µ ∩ D �= ∅. If D ∩ µ = ∅, since D cannot be
totally in N(B−

k ) as above, we can split Bk and B−
k further so that D is carried

by Bk − B−
k and hence ∂D �⊂ Ak after this splitting. Since there are only finitely

many such disks D, after a finite sequence of splittings, we get a branched surface
Bk satisfying the requirements of the lemma.

We should note that the assumption that B does not carry any normal torus is
important. For example, if µ is a torus, one can easily construct a counterexample
using an infinite sequence of disks wrapping around µ like the Reeb component. �

Lemma 4.10. Let M , B, {Sn} and µ be as in Lemma 4.9. Let γ be an immersed
essential closed curve in a leaf of µ. Then B can be split into a branched surface
B1 that carries µ and an infinite sub-sequence {Snk

} of {Sn}, such that, for each
k, Snk

contains no embedded disk D with the property that π(∂D) = π(γ), where
π : N(B1) → B1 is the collapsing map.

Proof. This lemma is basically the same as Lemma 4.9. Although the curve γ
may not be embedded, each Sn is embedded. Hence there are only finitely many
different configurations for ∂D. So the lemma follows from the same arguments in
the proof of Lemma 4.9. �

5. Helix-turn-helix bands

A technical part in the proof of the main theorem is to construct compressing
disks for the two handlebodies of the Heegaard splitting using N(B). Such com-
pressing disks are constructed using a complicated band in N(B) that connects
two parallel monogons, as shown in Figure 5.3(a). The purpose of this section is
to demonstrate how to construct these bands. Such bands are constructed using a
local picture of the limit lamination of a sequence of Heegaard surfaces. We will
start with a one-dimension lower example.

Definition 5.1. Let A = S1 × I be an annulus and α a compact spiral in A
transverse to the I–fibers. We define the winding number of α, denoted by w(α),
to be the smallest intersection number of α with an I–fiber of A.
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Example 5.2. Let τ be a train track obtained by attaching two “tails” to a circle
γ, as shown in Figure 4.1(b). Curves fully carried by τ must consist of spirals. We
use x1, . . . , x4 to denote the four branch sectors of τ , and the branch equations are
x1 + x3 = x4 and x2 + x3 = x4. Suppose {γn} is an infinite sequence of positive
integer solutions to the branch equations whose limit µ in PL(τ ) is a measured
lamination consisting of parallel circles carried by τ . So the coordinates of µ in
PL(τ ) are (0, 0, 1/2, 1/2). Let γi = (x(i)

1 , . . . , x
(i)
4 ) ∈ S(τ ) be the corresponding

sequence of integer points. For each γi, we denote the number of components of
γi by h(γi) and clearly, h(γi) = x

(i)
1 = x

(i)
2 . Moreover, the winding number of

each component of γi is w(γi) = x
(i)
3 /h(γi). Because of the branch equations, we

have γi = (x(i)
1 , x

(i)
1 , x

(i)
3 , x

(i)
1 + x

(i)
3 ). Since the limit of these points in PL(τ ) is

(0, 0, 1/2, 1/2), by part (1) of Proposition 4.1, we have that limi→∞ x
(i)
1 /x

(i)
3 = 0,

in other words limi→∞ w(γi) = ∞.
In general, a train track near a circle can have many “tails” like Figure 4.1(a),

but the argument above still works (using part (2) of Proposition 4.1). If the limit
of a sequence of spiral curves {γi} is a measured lamination by circles, then the
winding numbers tend to infinity, limi→∞ w(γi) = ∞.

Let S1 × I be an annulus, and let γ be a collection of disjoint spirals properly
embedded in S1 × I and transverse to the I–fibers. Suppose the winding number
for each spiral is at least 2. We fix an I–fiber {x}× I. Let β be a subarc of a spiral
in γ with β ∩ ({x} × I) = ∂β. Let α be the subarc of {x} × I between the two
endpoints of β. We define the discrepancy of γ to be 1+ |γ∩ int(α)|. It is very easy
to see that the discrepancy is equal to the number of components of γ and does not
depend on the choice of β.

Next, we consider the two-dimensional version of Example 5.2.

Example 5.3. If we take a product of the train track in Example 5.2 and an
interval, we get a branched surface; see the shaded region in Figure 5.1(a). As
in Figure 5.1(a), we may assume the branched surface is sitting in A × I, where
A is a horizontal annulus, and this branched surface is transverse to the I–fibers
of A × I. For any essential simple closed curve c in A, the intersection of the
cylinder c× I ⊂ A× I and this branched surface is a train track as in Example 5.2.
Suppose there is a sequence of spiraling disks {Sn} fully carried by this branched
surface and the limit lamination of {Sn} is a union of horizontal annuli of the form
A × {x}, x ∈ I. Then we can define the winding number similarly, and if n tends
to infinity, the winding number of Sn tends to infinity as well. To fit this into the
bigger picture, we should consider the A × I as a small portion of N(B) and each
Sn as the intersection of A× I with a Heegaard surface. Naturally, Sn may not be
connected. Next we assume each Sn lies in A × I, transverse to every I–fiber of
A × I.

Let h be the number of components of Sn and suppose h ≥ 2. Let c be an
essential simple closed curve in A. We consider the vertical cylinder c× I ⊂ A× I.
So Sn ∩ (c× I) consists of h spirals in c× I. These spirals Sn ∩ (c× I) cut c× I into
some bands. We may describe each band as a product l × J , where l is a curve, J
is an interval, l × ∂J is a pair of spirals in Sn ∩ (c × I), and each {x} × J (x ∈ l)
is a subarc of an I–fiber of c × I. We call such a band l × J a helical band ; see the
shaded region in Figure 5.2(a) for a picture. We call ∂l × J the two ends of the
band and define the wrapping number of the band to be the wrapping number of a
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Figure 5.1.

spiral l × {p}. We define the thickness of a helical band l × J to be the number of
components of Sn ∩ (l × J). By the construction, the thickness of a helical band is
at least 2 (since l× ∂J ⊂ Sn) and can be as large as h. If the thickness of a helical
band is less than h, then we can find a larger helical band l′×J ′ that contains l×J
and with larger thickness. We say l′ × J ′ is obtained by thickening l × J .

Example 5.4. Let A1 and A2 be two annuli and Q a quadrilateral. By connecting
A1 and A2 using Q, we get a pair of pants P , as shown in Figure 5.1(b). Now we
consider the product P × I. Let {Sn} be a sequence of compact surfaces in P × I
transverse to the I–fibers, and suppose the limit lamination of {Sn} is of the form
P ×C, where C is a closed set in I. Suppose each component of Sn∩(Q×I) is of the
form Q× {x}, x ∈ int(I), and suppose Sn ∩ (Ai × I) (i = 1, 2) consists of spiraling
disks as in Example 5.3. We will use hi to denote the number of components of
Sn ∩ (Ai × I), and we use wi to denote the winding number of a spiraling disk in
Sn ∩ (Ai × I). As in Example 5.2, if n is large, the winding number wi is large. In
this paper, we will also assume each hi is an even number and hi ≥ 2, i = 1, 2.

Sn∩(Ai×I) consists of hi spiraling disks (i = 1, 2). Topologically, each spiraling
disk is a meridian disk of the solid torus Ai×I, and the intersection of these spiraling
disks with each annulus in Ai×∂I is a union of parallel essential arcs in the annulus.
We say an arc K is a proper vertical arc if K is a subarc of an I–fiber of P × I
and K is properly embedded in P × I − Sn. Let γ × J be an embedded rectangle
in P × I. We call γ × J a vertical band if each {x} × J is a subarc of an I–fiber
and γ × ∂J lies in Sn. Note that the helical bands described in Example 5.3 are
vertical bands. We define the thickness of the vertical band γ×J to be the number
of components of Sn ∩ (γ × I). So the thickness of a vertical band is at least 2.

By our assumptions, the number of components of Sn ∩ (Q × I) is roughly
w1h1 = w2h2. Let J be a proper vertical arc in Q × I, and let αJ be an arc in
Q× I connecting a point in int(J) to Q×{0}. We define the height of J to be the
minimal number of intersection points in Sn ∩ αJ . We take a vertical band β × J
around Ai × I and with both vertical arcs ∂β ×J in Q× I, as in Figure 5.2(b), and
suppose each {x} × J (x ∈ β) is a proper vertical arc. Then since Sn ∩ (Ai × I)
consists of spiraling disks, the height difference between the two proper vertical
arcs ∂β × J is equal to the discrepancy (see the definition of discrepancy before
Example 5.3) of the spirals around Ai × I. Hence the height difference between the
two arcs ∂β × J is equal to hi. Moreover, two proper vertical arcs in (Ai ∩ Q) × I
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belong to the same component of Ai × I − Sn if and only if the height difference
between the two arcs is khi for some integer k.

Now we are in position to construct a helix-turn-helix band (the word helix-turn-
helix comes from biology). Recall that, as in Example 5.4, we assume each hi is an
even number and hi ≥ 2.

Example 5.5 (Helix-turn-helix bands). We assume h1 = h2. First we give an
outline of the construction. Let c and c′ be a pair of disjoint essential simple closed
essential curves in A1. So c × I and c′ × I are a pair of disjoint vertical annuli in
A1×I. We take a pair of helical bands in c×I and c′×I, respectively, and connect
them using a vertical band going around A2 × I, as depicted in Figure 5.2(b). The
resulting vertical band is a helix-turn-helix band. There are some subtleties and
additional requirements. The detailed description of the construction is as follows.

Let J1 be a proper vertical arc in (A1 ∩ Q) × I. We first take a vertical band
σ around A2 × I, connecting J1 to another proper vertical arc J2 ⊂ (A1 ∩ Q) × I;
see the shaded region in Figure 5.2(b). Note that in Figure 5.2(b), the left two
cylinders are vertical cylinders in A1×I and the right cylinder is a vertical cylinder
in A2 × I. Clearly the height difference between J1 and J2 is h2. Since h1 = h2,
J1 and J2 lie in the same component of A1 × I − Sn. Then we take a helical band
σi (i = 1, 2), as in Figure 5.2(a), connecting Ji to a proper vertical arc J ′

i , where
J ′

i has an endpoint in the bottom annulus A1 × {0}. We can choose σ1 and σ2 in
different vertical cylinders in A1 × I; see the left part of Figure 5.2(b) for a picture
of two disjoint cylinders. So we may assume σ1 ∩ σ2 = ∅ and Σ = σ1 ∪ σ ∪ σ2 is an
embedded vertical band connecting J ′

1 to J ′
2. Note that since the height difference

between J1 and J2 is h2 = h1, the winding numbers for σ1 and σ2 differ by one.
We may write Σ = γ × J , where γ is an arc and J is a closed interval. Σ has
the properties that Σ ∩ Sn = γ × ∂J , each {x} × J is a subarc of an I–fiber of
P × I, and ∂γ ×J = J ′

1 ∪J ′
2. We call Σ a helix-turn-helix (or an HTH) band. Note

that the thickness of the vertical band Σ in the construction above is 2. Similar
to Example 5.3, we can trivially thicken the HTH band Σ to an embedded vertical
band Σ̂ so that the thickness of Σ̂ is h1 (h1 = h2). We call both Σ and Σ̂ HTH
bands.

Since J ′
1 and J ′

2 lie in the same component of A1 × I − Sn and each J ′
i has an

endpoint in the bottom annulus A1 × {0}, we may glue a small vertical band δ to
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Σ, connecting J ′
1 to J ′

2, and get a vertical annulus AΣ = Σ ∪ δ properly embedded
in (P × I) − Sn. Note that J ′

1∪J ′
2 is a pair of opposite edges of δ and δ has an edge

totally in the bottom annulus A1 × {0}. Let xi be the element in the fundamental
group π1(P × I) represented by the core of Ai × I (i = 1, 2). Then this vertical
annulus AΣ represents the element x−k

1 · x2 · xk+1
1 in π1(P × I), for some k.

Note that in a previous version of the paper, there is a construction of an HTH
band for the case h1 < h2. That construction turns out to be unnecessary for the
proof of the main theorem.

Example 5.6. In Example 5.5, if the winding numbers w1 and w2 are large, we can
construct many disjoint HTH bands. To see this, we first divide P ×I into N parts,
P × Ii (i = 1, . . . , N), where Ii = [ i−1

N , i
N ]. We may assume the intersection of Sn

with each P × Ii is as described in Example 5.4. Suppose the winding numbers w1

and w2 are large. We can carry out the construction in Example 5.5 on each P ×Ii.
Then we glue a pair of long helical bands to the two ends of each vertical band
constructed in P × Ii to spiral down to the bottom annulus A1 ×{0}. By choosing
these helical bands to be in disjoint vertical cylinders of A1 × I (see the left part
of Figure 5.2(b) for a picture of two disjoint cylinders), we may assume these HTH
bands are disjoint. Let Σi = γi × J (i = 1, . . . , N) be the N disjoint HTH bands
above. We may assume each component of ∂γi × J is a proper vertical arc with an
endpoint in A1 × {0}. We may also construct the HTH bands so that these Σi’s
lie in the same component of P × I − Sn. Moreover, we may assume that, for each
i, the two proper vertical arcs ∂γi × J are close to each other. Hence, similar to
Example 5.5, we can glue a small vertical band δi to each Σi and get a collection of
disjoint vertical annuli AΣi

= Σi∪δi (i = 1, . . . , N) properly embedded in the same
component of P × I − Sn. The elements represented by these AΣi

’s in π1(P × I)
are conjugate. In fact, by unwinding the pairs of helical bands, we can isotope these
annuli AΣi

in P × I − Sn so that π(AΣi
) is the same closed curve in P for all i,

where π : P × I → P is the projection. Furthermore, similar to Example 5.5, we
can trivially thicken these Σi’s into a collection of embedded disjoint HTH bands
with thickness h1.

Let Σ and AΣ be the HTH band and the vertical annulus constructed in the ex-
amples above. So, after a small perturbation, we may assume π(AΣ) is an immersed
essential closed curve in P , where π : P ×I → P is the projection. By Example 5.6,
if w1 and w2 are large, we can choose N disjoint HTH bands Σi (i = 1, . . . , N) and
N disjoint vertical annuli AΣi

. Moreover, after some isotopy, π(AΣi
) is the same

curve in P for all i. Thus, regardless of the configurations of Sn, as long as n is
large, there is a fixed finite set of immersed essential closed curves in P , denoted
by CP , such that π(AΣi

) above is a curve in CP , up to isotopy.
The following lemma follows trivially from Lemma 4.10.

Lemma 5.7. Let M , B, {Sn} and µ be as in Lemma 4.9. Let P be an essential
sub-surface of a leaf l of µ. Suppose P is a pair of pants. Let CP be the finite set of
curves in P as above. Then B can be split into a branched surface B1 that carries
µ and an infinite sub-sequence {Snk

} of {Sn}, such that no Snk
contains any disk

D with the property that π(∂D) = π(γ) for any γ ∈ CP .

Proof. By the hypotheses, every curve γ ∈ CP is essential in the leaf l. So the
lemma follows from Lemma 4.10. �
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ii−1

Figure 5.3.

Definition 5.8. Let Sn be a closed embedded surface carried by N(B), and let ν
be a subarc of an I–fiber of N(B) with ∂ν ⊂ Sn. We say that ν bounds a monogon
if there is an embedded disk E transverse to Sn, such that ∂E = ν ∪ α, where
α ⊂ Sn and ∂α = ∂ν. We call the disk E a monogon; see Figure 6.1(b) for a
picture. We call E an innermost monogon if E ∩Sn = α. Since ν ⊂ N(B), we may
assume that a neighborhood of ν in E is a sub-disk κ = a × J of E such that each
{x}×J is a subarc of an I–fiber of N(B), a× ∂J ⊂ α ⊂ ∂E, and ν is a component
of ∂a × J . We call κ the tail of the monogon. We define the thickness of the tail
to be |Sn ∩ ν| and define the length of the tail to be the length of a component of
a×∂J . So, if E is innermost, the thickness of the tail is 2. Let Σ = γ×J be an HTH
band constructed in Example 5.5, and let ν be a component of ∂γ × J . Suppose ν
bounds a monogon E disjoint from Σ. Then we can glue Σ and two parallel copies
of E together, forming an embedded disk ∆ as shown in Figure 5.3(a). By our
construction, ∂∆ is a simple closed curve in Sn. We call the disk ∆ constructed
in this fashion a pinched disk. Since ∆ is constructed using parallel copies of E,
there is a rectangle R ⊂ Sn between the two monogons; see the shaded regions of
Figure 5.3(b). Let Σ′ be another HTH band constructed in Example 5.6. We can
glue Σ′ and another two parallel copies of E together, forming an embedded disk
∆′. Similarly, there is a rectangle R′ ⊂ Sn between the two monogons, as shown
in Figure 5.3(b). By our construction in Example 5.6, ∆∩∆′ = ∅ and R ∩R′ = ∅.
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Moreover, there is a short arc η ⊂ Sn connecting R to R′, as shown in Figure 5.3(b).
We call an arc η constructed in this fashion an η–arc.

Remark 5.9. Let Σ, ∆ and R be as in Definition 5.8. We can denote R = α × β,
where α and β are intervals, and suppose R ∩ ∆ = α × ∂β ⊂ ∂∆. Moreover,
(∂∆ − α × ∂β) ∪ (∂α × β) is exactly the boundary of the annulus AΣ constructed
in Example 5.5.

Lemma 5.10. Let M , µ, P , B1 and {Snk
} be as in Lemma 5.7. Suppose P × I

is embedded in N(B1) with each {x} × I a subarc of an I–fiber of N(B1). Suppose
Snk

∩ (P × I) is a surface as described in Example 5.4 and assume the two winding
numbers w1 and w2 are large enough. Let Σ = γ × J be an HTH band constructed
in the examples above. Suppose the arcs ∂γ × J bound a pair of parallel embedded
monogons E1 and E2 in M − P × (ε, 1], where ε ∈ I is a small number such that
∂γ × J ⊂ P × [0, ε]. As in Definition 5.8, let ∆ = E1 ∪ Σ ∪ E2 be an embedded
pinched disk with ∂∆ ⊂ Snk

. Then ∂∆ is essential in Snk
.

Proof. As in Example 5.5, we can glue a small rectangle δ to Σ and form an embed-
ded annulus AΣ with ∂AΣ ⊂ Snk

. By Lemma 5.7, ∂AΣ is a pair of essential curves
in Snk

. Note that, since E1 and E2 may not be innermost monogons, ∆∩Snk
may

contain other circles.
Since E1 and E2 are parallel monogons, there is a thin rectangle R ⊂ Snk

between
∂E1 and ∂E2, and E1 ∪ E2 ∪ δ ∪ R is an embedded 2–sphere in M ; see the shaded
region in Figure 5.3(b) for a picture of R.

Since the two winding numbers w1 and w2 in Example 5.4 are large, we may
assume the number ε in the lemma is very small. Hence, as in Example 5.6, we
can find another disjoint HTH band Σ′ = γ′ × J and construct an annulus AΣ′

by gluing a small rectangle δ′ to Σ′. By Lemma 5.7, ∂AΣ′ is also essential in Snk
.

Moreover, we can choose Σ′ so that ∂γ′ × J bounds a pair of monogons E′
1 and E′

2

that are parallel to E1 and E2. Similarly, ∆′ = E′
1 ∪ Σ′ ∪ E′

2 is also an embedded
disk with ∂∆′ ⊂ Snk

and ∆ ∩ ∆′ = ∅.
Similar to R, there is also a thin rectangle R′ ⊂ Snk

between ∂E′
1 and ∂E′

2.
Moreover, by our construction in Example 5.6, R∩R′ = ∅. Since the four monogons
E1, E2, E′

1, E′
2 are parallel to each other, as described in Definition 5.8, there is

a short arc η ⊂ Snk
outside P × I connecting R to R′, as shown in Figure 5.3(b),

where the two shaded regions are R and R′.
Now, suppose ∂∆ is a trivial curve in Snk

, and we use D to denote the disk in
Snk

bounded by ∂∆. By Remark 5.9, R ∩ ∂∆ is a pair of opposite edges of R, and
the union of the other pair of opposite edges of R and ∂∆−R is ∂AΣ. Since ∂AΣ is
essential in Snk

, the rectangle R must lie in Snk
− int(D). Hence the arc η must lie

in D. Since R∪ ∂∆ is disjoint from R′ ∪ ∂∆′, R′ ∪ ∂∆′ must lie in D. This implies
∂AΣ′ lies in D and hence is trivial in Snk

, contradicting our assumptions. �

Therefore, after some splittings and taking a sub-sequence of {Sn}, we have the
following. For each HTH band Σ, by Lemma 5.7, the boundary of the annulus AΣ

constructed above is a pair of essential curves in Sn. Moreover, if the two ends of
Σ bound a pair of parallel monogons, by Lemma 5.10, the boundary of the pinched
disk ∆ constructed above is also an essential curve in Sn.
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6. Proof of the main theorem

Suppose M is a closed orientable irreducible and non-Haken 3–manifold and M
is not a Seifert fiber space. By Theorem 2.1, M has a finite collection of branched
surfaces such that

(1) each branched surface in this collection is obtained by gluing together nor-
mal disks and at most one almost normal piece with respect to a fixed
triangulation, similar to [6],

(2) up to isotopy, every strongly irreducible Heegaard surface is fully carried
by a branched surface in this collection,

(3) no branched surface in this collection carries any normal 2–sphere or normal
torus.

The goal of this section is to prove Theorem 6.1. It is clear that Theorem 6.1 and
Theorem 2.1 imply the main theorem.

Theorem 6.1. Suppose M is a closed, orientable, irreducible and non-Haken 3–
manifold. Let B be a branched surface in Theorem 2.1. Then B carries only finitely
many irreducible Heegaard surfaces, up to isotopy.

Proof. Each closed surface fully carried by B corresponds to a positive integer
solution to the branch equations. Since the projective lamination space PL(B)
is compact, if B fully carries an infinite number of distinct strongly irreducible
Heegaard surfaces, then there is an accumulation point in the projective lamination
space, which corresponds to a measured lamination µ. We may consider µ as the
limit of these Heegaard surfaces; see Section 4. Our goal is to show that µ is also
an essential lamination. Then by Proposition 3.8, M is Haken, which contradicts
our hypothesis.

Because of Theorem 3.1, we divide the proof into two parts. Part A is the case
that µ is an exceptional minimal lamination and Part B is the case that µ is a
closed surface. The proofs for the two cases are slightly different.

Part A. µ is an exceptional minimal measured lamination.
The main task is to prove the following lemma.

Lemma 6.2. µ is incompressible in M .

Proof of Lemma 6.2. Suppose {Sn} is an infinite sequence of strongly irreducible
Heegaard surfaces fully carried by B and µ is the limit point of {Sn} in PL(B).
The lamination µ is carried by B, but it may not be fully carried by B. Let B−

be the sub-branched surface of B that fully carries µ. By Corollary 4.3, µ must
be a normal lamination. Hence B− does not contain the almost normal piece and
every surface carried by B− is normal. By our hypotheses, B− does not carry any
2–sphere or torus.

We may assume N(B−) ⊂ N(B) with the induced I–fiber structure. By Propo-
sition 4.6, we can arbitrarily split B− along µ and then split B accordingly so that
the resulting branched surface still carries an infinite sub-sequence of {Sn}. There-
fore, by Proposition 4.6 and Lemma 3.7, after splitting B and B− and taking an
infinite sub-sequence of {Sn}, we may assume no component of ∂hN(B−) is a disk
and each leaf of µ is π1–injective in N(B−).
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After some isotopy, we may assume ∂hN(B−) ⊂ µ. Suppose µ is compress-
ible and let D be a compressing disk. After some splittings on B and B− as in
Proposition 4.6 and taking a sub-sequence of {Sn}, we may assume ∂hN(B−) is
compressible and D is a compressing disk in M − int(N(B−)).

So γ1 = ∂D is an essential curve in a leaf l of µ. Since µ has no holonomy, there
is a vertical annulus V in N(B−) such that V contains γ1 and µ ∩ V is a union
of parallel circles. Thus, after some splittings on B−, we may assume π(γ1) is a
simple closed curve in B− − L− and V = π−1(π(γ1)), where π : N(B−) → B−

is the collapsing map and L− is the branch locus of B−. By Proposition 4.6 and
Remark 4.8, we may split B accordingly and assume B still carries an infinite
sequence of Heegaard surfaces {Sn} whose limit lamination is µ and B− is the
sub-branched surface of B that fully carries µ.

By Lemma 4.9, after some splittings and taking a sub-sequence of {Sn}, we may
assume that Sn∩V does not contain any circle that is trivial in Sn, for each n. Since
γ1 bounds an embedded disk in M , by Lemma 2.6, if Sn∩V consists of circles, then
each circle bounds a compressing disk in one of the two handlebodies. However, if
Sn ∩ V consists of circles, by Corollary 4.2 and Example 5.2, the number of circles
in Sn ∩ V tends to infinity as n tends to infinity. This gives a contradiction to
Lemma 2.4. Therefore, Sn ∩ V cannot be a union of circles if n is large enough. So
we may assume Sn ∩ V consists of spirals.

Since every leaf is dense, l ∩ V contains an infinite number of circles. Since B−

does not carry any torus, by Proposition 2.2 and our assumptions on N(B−) above,
there must be a circle γ2 ⊂ l ∩ V such that γ2 is non-trivial and not homotopic to
γ1 in l. Let γi × I ⊂ V (i = 1, 2) be a pair of disjoint thin vertical annuli such that
γi ⊂ γi × I and µ∩ (γi × I) is a union of parallel circles. Let α ⊂ l be a simple arc
connecting γ1 to γ2, and let Γ = γ1∪α∪γ2 be a 1–complex in l. By choosing γi×I
to be thin enough, we may assume γ1 × I and γ2 × I are connected by a rectangle
α × I, forming an embedded 2–complex Γ × I with each {x} × I (x ∈ Γ) a subarc
of an I–fiber of N(B−). By our construction, µ∩ (Γ× I) is a union of 1–complexes
parallel to Γ.

Let Ai ⊂ l (i = 1, 2) be a small annular neighborhood of γi in l, Q a small
neighborhood of α in l, and P = A1 ∪ Q ∪ A2 a small neighborhood of Γ in l. We
can extend Γ×I to a product P ×I ⊂ N(B−). So µ∩(P ×I) is a union of compact
surfaces parallel to P . Moreover, since γ1 and γ2 are not homotopic in l, P is an
essential sub-surface of l.

Since every leaf is dense in µ, after some splittings along µ, we may assume
π(P ) ⊂ B− − L− and P × I = π−1(π(P × I)), where π : N(B−) → B− is the
collapsing map and L− is the branch locus of B−. By Proposition 4.6, we may split
B accordingly and assume B still carries an infinite sequence of Heegaard surfaces
{Sn} whose limit lamination is µ and B− is the sub-branched surface of B that
fully carries µ.

By the construction above, we may consider µ∩ (P × I) as the limit lamination
of the sequence {Sn ∩ (P × I)}. Since Sn ∩ V consists of spirals and γi × I ⊂ V ,
after some splittings, we may assume Sn ∩ (Ai × I) is a union of spiraling disks
and Sn ∩ (P × I) is as described in Example 5.4. We use the same notation as in
Section 5, and in particular, let hi be the number of components of Sn ∩ (Ai × I).
Since γ1 × I and γ2 × I are disjoint sub-annuli of V before the splitting, we may
assume the spirals in Sn ∩ V wind around both γi × I many times. So the spirals
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Figure 6.1.

in Sn ∩ (γi × I) are part of longer spirals in Sn ∩ V . Hence, the discrepancies (see
Section 5 for the definition of discrepancy) of the spirals in Sn ∩ (γi × I) (i = 1, 2)
are the same. Therefore, we have h1 = h2.

By Lemma 5.7, after some splittings and taking a sub-sequence of {Sn}, we may
assume that no Sn contains a disk E with the property that π(∂E) = π(γ) for any
curve γ ∈ CP , where CP is as in Lemma 5.7.

Recall that γ1 bounds a compressing disk D in M − int(N(B−)). Let D̂ =
D ∪ (γ1 × I), where γ1 × I ⊂ P × I. By our construction above, D̂ is an embedded
disk in M . As Sn is a compact surface, Sn ∩ D̂ must produce a monogon with a
long “tail” spiraling around γ1 × I, as shown in Figure 6.1(a). In fact, there are
at least two monogons, as the θ1 and θ2 in Figure 6.1(a). Note that D̂ ∩ Sn may
contain circles.

We will first consider the case that D̂ ∩ Sn does not contain any circle.
Case 1. D̂ ∩ Sn does not contain any circle.
Since Sn is a separating surface, we may assume each hi (i.e., the number of

components in Sn ∩ (Ai × I)) is an even number. Since h1 = h2, we have the
following two subcases.

Subcase 1a. h1 = 2.
In this case, Sn ∩ D̂ is basically a single curve with both ends wrapping around

γ1 × I, as shown in Figure 6.1(a). So we have two innermost monogons θ1 and θ2

in different handlebodies. After a small perturbation in a small neighborhood of
D̂, we may assume ∂θ1 and ∂θ2 are disjoint in Sn. As in Examples 5.6, we can find
two disjoint HTH bands Σ1 and Σ2, such that Σi (i = 1, 2) connects two parallel
copies of θi forming a pinched disk ∆i. By Lemma 5.10 and our construction, ∆1

and ∆2 are compressing disks in different handlebodies and ∂∆1 ∩ ∂∆2 = ∅, which
contradicts the assumption that Sn is a strongly irreducible Heegaard surface.

Subcase 1b. h1 ≥ 4.
Since h1 ≥ 4, D̂∩Sn contains at least two curves. Note that each curve of D̂∩Sn

cuts D̂ into two monogons, as the θ1 and θ2 in Figure 6.1(a). Thus, we can find
a monogon E which is not innermost, but each monogon in the interior of E is
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innermost, as shown in Figure 6.1(b). Let hE be the thickness of the tail of E and
clearly hE ≤ h1.

Let E1 and E2 be two parallel copies of E. Since hE ≤ h1, by Example 5.5, we
can connect the tails of E1 and E2 using an HTH band Σ̂ (in P × I) with thickness
hE . We denote E1 ∪ Σ̂ ∪ E2 by ∆. So ∆ is an embedded disk with ∂∆ ⊂ Sn. Let
c1, . . . , cm be the components of Sn ∩ int(∆), and let ∆i be the disk in ∆ bounded
by ci. Similar to ∆, each ∆i is the union of a sub-band of Σ̂ and two parallel
copies of a sub-monogon of E. Since we have assumed each sub-monogon in int(E)
is innermost, ∆i ∩ Sn = ∂∆i. By Lemma 5.10 and our assumptions above, ∂∆
and each ∂∆i are essential curves in Sn. So each ∆i is a compressing disk in a
handlebody, say H1. By Lemma 2.6, ∂∆ must bound a disk in a handlebody. Since
the Heegaard splitting is strongly irreducible, ∂∆ must bound a compressing disk in
H1 as well. So P∆ = ∆−

⋃m
i=1 int(∆i) is a planar surface properly embedded in H2.

If P∆ is compressible in H2, then we can compress P∆ into a collection of disjoint
incompressible planar surfaces P1, . . . , Ps. By Corollary 2.8, each Pi is ∂–parallel
in H2. Let Qi be the sub-surface of Sn that is parallel to Pi in H2 (∂Pi = ∂Qi).
Since the Pi’s are disjoint, any two surfaces Qi and Qj are either disjoint or nested
in Sn.

By Example 5.6, we can construct another HTH band Σ̂′ with thickness hE ,
connecting two monogons E′

1 and E′
2, where E′

1 and E′
2 are also two parallel copies

of E. We use ∆′ to denote the disk E′
1 ∪ Σ̂′ ∪E′

2. By our construction ∆∩∆′ = ∅.
Similar to ∆, int(∆′) ∩ Sn is a union of circles c′1, . . . , c

′
m and the sub-disk of

∆′ bounded by c′i, denoted by ∆′
i, is a compressing disk for the handlebody H1.

Similarly, we can compress the planar surface ∆′−
⋃m

i=1 int(∆′
i) into a collection of

incompressible planar surfaces P ′
1, . . . , P

′
t . Since ∆ ∩∆′ = ∅, we may assume these

Pi’s and P ′
j ’s are all disjoint in H2. So each P ′

i is also ∂–parallel in H2 and we use
Q′

i to denote the sub-surface of Sn that is parallel to P ′
i (∂P ′

i = ∂Q′
i). Since these

planar surfaces Pi’s and P ′
j ’s are disjoint and ∂–parallel, any two surfaces Qi and

Q′
j are either disjoint or nested in Sn.
To unify notation, we also denote ∆, ∂∆, ∆′, ∂∆′ by ∆0, c0, ∆′

0, c′0, respectively.
As in Definition 5.8 and Remark 5.9, for each ci = ∂∆i (resp. c′i), 0 ≤ i ≤ m,

there is a rectangle Ri = αi × βi (resp. R′
i = α′

i × β′
i) in Sn, see the shaded

region in Figure 5.3(b), such that Ri ∩ ci (resp. R′
i ∩ c′i) is a pair of opposite edges

αi × ∂βi (resp. αi × ∂βi). Moreover, these Ri and R′
j are pairwise disjoint. By our

construction in Section 5, (ci−αi×∂βi)∪(∂αi×βi) (resp. (c′i−α′
i×∂β′

i)∪(∂α′
i×β′

i))
is the boundary of an embedded vertical annulus AΣi

(resp. AΣ′
i
) in P × I, and by

our assumptions and Lemma 5.7, ∂AΣi
(resp. ∂AΣ′

i
) is a pair of essential curves in

Sn.
Let Wi (resp. W ′

i ) be the closure of a small neighborhood of ci ∪ Ri (resp.
c′i ∪ R′

i) in Sn. So two boundary circles of Wi (resp. W ′
i ) are parallel to the two

components of ∂AΣi
(resp. ∂AΣ′

i
) above, and the other boundary component of Wi

(resp. W ′
i ) is parallel to ci (resp. c′i). By our assumptions above, each boundary

circle of Wi (resp. W ′
i ) is an essential curve in Sn. Moreover, there is an η–arc (see

Definition 5.8) ηi ⊂ Sn connecting Ri to R′
i, as shown in Figure 5.3(b).

Let Qi be a planar surface above, and suppose c0, . . . , cq are the boundary compo-
nents of Qi. Next, we will show that at least one Rj (0 ≤ j ≤ q) lies in Sn−int(Qi).
Otherwise, suppose Rj ⊂ Qi for every j. Then for each j, ∂αj ×βj is a pair of arcs
properly embedded in Qi. Since Qi is a planar surface and since there is a rectangle
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Rj attached to each cj , by an innermost-surface argument, it is easy to see that,
for some j, ∂αj ×βj is a pair of ∂–parallel arcs in Qi. This implies that a boundary
component of Wj bounds a disk in Qi and hence is trivial in Sn, contradicting our
assumptions. This argument also holds for each Q′

i. Therefore, for each Qi (resp.
Q′

i), there is always such a rectangle Rj (resp. R′
k) lying outside int(Qi) (resp.

int(Q′
i)) and with two opposite edges in ∂Qi (resp. ∂Q′

i).
Let Qi be any planar surface above. Suppose ck is a boundary circle of Qi and

suppose Rk = αk × βk is a rectangle outside int(Qi). So Rk ∩ Qi = Rk ∩ ck =
αk × ∂βk. By our construction earlier, there is an arc ηk connecting Rk to R′

k,
and int(ηk) is disjoint from any cj or c′j . Moreover, the two endpoints of ηk lie in
αk × ∂βk ⊂ ck and α′

k × ∂β′
k ⊂ c′k. Suppose c′k is a boundary component of Q′

j .
Since Rk lies outside int(Qi), ηk must lie in Qi. Hence c′k ⊂ Qi. Since the planar
surfaces Qi and Q′

j are either disjoint or nested, c′k ⊂ Qi implies that Q′
j ⊂ Qi.

This means that for each Qi, there is some Q′
j such that Q′

j ⊂ Qi.
However, we can apply the same argument to Q′

i and conclude that, for each Q′
i,

there is some Qk such that Qk ⊂ Q′
i. This is impossible because there is always an

innermost planar surface among these Qi’s and Q′
j ’s.

Case 2. D̂ ∩ Sn contains circles.
Similar to Case 1, each non-circular curve cuts D̂ into a pair of monogons,

though there may be circles in the monogons. We say a monogon E is innermost
if E does not contain other monogons, but E may contain circles of D̂ ∩ Sn. We
first consider innermost monogons. Let E be an innermost monogon and c1, . . . , cK

the outermost circles of E ∩ Sn. Since the sequence of surfaces {Sn} are carried
by B, by assuming D̂ to be transverse to B, it is easy to see that K, the number
of such outermost circles in E, is bounded from above by a number independent
of Sn. Since we assume n is large, the winding number wi of the spiraling disks in
Ai × I is large. So, by Example 5.6, we can find a large number of disjoint HTH
bands Σ1, . . . , ΣN . Moreover, we can take 2N parallel copies of E, denoted by
E1, E

′
1, . . . , EN , E′

N , so that the disks ∆i = Ei ∪Σi ∪E′
i are disjoint and embedded

in M . By Lemma 5.10, we may assume each ∂∆i is an essential curve in Sn. Since
K is bounded by a number independent of Sn, we may assume N is much larger
than K, and this is a key point in the proof.

Between each pair Ei and E′
i, there is a rectangle Ri ⊂ Sn with two opposite

edges in ∂Ei and ∂E′
i; see the shaded region in Figure 5.3(b). By the construction

in Section 5, we may assume there is an η–arc (see Definition 5.8) ηi connecting Ri

to Ri+1 for each i = 1, . . . , N − 1, as shown in Figure 5.3(c). The interior of each
ηi is disjoint from these disks ∆j ’s.

If ci (i = 1, . . . , K) is a trivial curve in Sn, since M is irreducible, we can perform
some isotopy on E (fixing ∂E) and get a monogon disk with fewer outermost circles
in E ∩ Sn. So we may assume each ci is essential in Sn. Let di be the disk in the
monogon E bounded by ci (i = 1, . . . , K), and suppose E −

⋃K
i=1 di lies in H1. By

Lemma 2.6, each circle ci bounds a compressing disk in a handlebody. If some ci

bounds a disk in H1, then we can replace di by a disk in H1 and obtain a disk with
the same boundary ∂∆i but fewer outermost circles. If we can eliminate all the
outermost circles ci’s in this fashion, then we can conclude that each ∂∆i bounds a
compressing disk in H1. Suppose we cannot eliminate these circles ci (i = 1, . . . , K)
via these isotopies and surgeries. Then by the arguments above, we may assume
each ci bounds a compressing disk in H2.
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The arguments next involve compression bodies and strongly irreducible Hee-
gaard splittings for manifold with boundary. We refer to [4] for definitions and
fundamental results.

Let W be the 3–manifold obtained by adding K 2–handles to H1 along these
ci’s, and let Ŵ be the manifold obtained by capping off the 2–sphere components of
∂W by 3–balls. Since each ∆i is constructed using parallel copies of E, after some
isotopies, we may assume each ∆i is a properly embedded disk in W . Note that
after pushing Sn into int(Ŵ ), Sn becomes a Heegaard surface for Ŵ , bounding the
handlebody H1 on one side and a compression body W2 on the other side. Since
each ci bounds a compressing disk in H2 and M = H1∪Sn

H2 is strongly irreducible,
by [4], the Heegaard splitting Ŵ = H1 ∪Sn

W2 is also strongly reducible. By our
assumption on E above, at least one 2–handle is added to H1 and hence W2 is not
a trivial compression body. Thus, by a theorem of Casson and Gordon (Theorem
2.1 of [4]), Ŵ is irreducible, and if ∂Ŵ �= ∅, ∂Ŵ is incompressible in Ŵ . Therefore,
each ∂∆i bounds a disk Di in ∂W (i = 1, . . . , N).

Since W is obtained by attaching K 2–handles to H1, there are 2K disjoint disks
m1, . . . m2K in ∂W −Sn parallel to the cores of these 2–handles. Note that one can
obtain the handlebody H2 by attaching 1–handles to M − int(W ) along these disks
mi’s. Since each ∂∆i = ∂Di is essential in Sn, each disk Di ⊂ ∂W (i = 1, . . . , N)
must contain some mj (1 ≤ j ≤ 2K). Recall that K is bounded by a number
independent of Sn and we have assumed that N is very large compared with K.
Since each Di contains some mj , for any integer p, if N is large enough, there exist
a sequence of p nested disks Da1 ⊂ Da2 ⊂ · · · ⊂ Dap

(0 ≤ ai ≤ N). Note that if
p > 2K, at least one annulus Dai+1 − Dai

does not contain any disk mj . So, by
assuming N is large enough, one can find three nested disks, say D1 ⊂ D2 ⊂ D3,
such that the two annuli D3 − int(D2) and D2 − int(D1) do not contain any disk
mi.

Recall that ∂D2 = ∂∆2 and there is a rectangle R2 ⊂ Sn with two opposite edges
attached to ∂∆2. By the construction of W , we also have R2 ⊂ ∂W . Moreover,
int(R2) is disjoint from the circles ∂∆j . So R2 lies in one of the two annuli, D3 −
int(D2) or D2−int(D1). Let W (∂∆2∪R2) be the closure of a small neighborhood of
∂∆2 ∪R2 in Sn. By our assumptions before, each boundary circle of W (∂∆2 ∪R2)
is essential in Sn. Since the two annuli D3 − int(D2) and D2 − int(D1) do not
contain any disk mi, one boundary circle of W (∂∆2 ∪ R2) must be a trivial circle
in both ∂W and Sn, which contradicts our constructions and assumptions on the
Ri’s earlier.

The arguments above show that, for any innermost monogon E and pinched
disk ∆i above, after some isotopies and surgeries, we can eliminate these outermost
circles ci so that ∆i becomes a compressing disk in H1, where E −

⋃K
i=1 di ⊂ H1

as above. Now, similar to Case 1, we have two subcases.
Subcase 2a. h1 = 2.
In this subcase, D̂∩Sn contains exactly one non-circular curve and this curve cuts

D̂ into a pair of innermost monogons. So, by the arguments above on innermost
monogons, we can eliminate the outermost circles in D̂ ∩ Sn and construct two
disjoint compressing disks in the two handlebodies as in Subcase 1a.

Subcase 2b. h1 ≥ 4.
The proof for this subcase is a combination of the proof of Subcase 1b and

the arguments on innermost monogons above. Similar to Subcase 1b, we can find
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a monogon E which is not innermost, but each monogon in the interior of E is
innermost. As in Subcase 1b, by connecting two parallel copies of E and a thick
HTH band Σ, we get a pinched disk ∆ (see Definition 5.8), with ∂∆ ⊂ Sn. Let
ε1, . . . , εk be the monogons in int(E). Then the corresponding parallel copies of εi

and a sub-band of Σ form a pinched disk ∆i ⊂ ∆ (i = 1, . . . , k). By Lemma 5.10 and
our assumptions earlier, ∂∆ and each ∂∆i are essential in Sn. By the arguments
on innermost monogons, after some isotopies and surgeries, we may assume Sn ∩
int(∆i) = ∅ and each ∆i is a compressing disk in a handlebody. Since Sn is strongly
irreducible, these ∆i’s are compressing disks in the same handlebody, say H2.

Let c1, . . . , cK be the outermost circles in E ∩Sn. As before, K is bounded by a
number independent of Sn. By our assumption on innermost monogons, these ci’s
lie in E −

⋃k
i=1 εi. By the construction of the pinched disks, Sn ∩ (∆ −

⋃k
i=1 ∆i)

has 2K outermost circles c1, . . . , cK and c′1, . . . , c
′
K , where each c′i is parallel to ci

in Sn. As before, we may assume each ci is an essential curve in Sn. Let di (resp.
d′i) be the disk in ∆ bounded by ci (resp. c′i). We use P∆ to denote the closure of
∆ −

⋃k
i=1 ∆i −

⋃K
i=1 di −

⋃K
i=1 d′i. So P∆ is a properly embedded planar surface in

the handlebody H1, and by our previous assumptions, each component of ∂P∆ is
essential in Sn. By Lemma 2.6, each circle in ∂P∆ bounds a compressing disk in a
handlebody. Since each ∂∆i bounds a disk in H2 and the Heegaard surface Sn is
strongly irreducible, each component of ∂P∆ bounds a compressing disk in H2. By
Corollary 2.8, if P∆ is incompressible in H1, then P∆ is ∂–parallel in H1.

Similar to the arguments for the innermost monogons, we can take 2N par-
allel copies of E and use N disjoint HTH bands to construct N pinched disks,
∆̃1, . . . , ∆̃N . Since these pinched disks are constructed using parallel copies of the
same monogon E, we may apply the arguments for ∆ and P∆ above to each of the
N pinched disks ∆̃1, . . . , ∆̃N . Let P1, . . . , PN be the planar sub-surfaces of these
N pinched disks constructed in the same way as the P∆ above. In particular, each
Pi is properly embedded in H1 and each circle in ∂Pi bounds a compressing disk
in H2. Each boundary circle of Pi is either the boundary of a pinched disk or a
circle parallel to some cj in Sn. To simplify notation, we assume each Pi is incom-
pressible. The proof for the compressible case is the same after we compress the
Pi’s into incompressible pieces, as in Subcase 1b. So, by Corollary 2.8, each Pi is
∂–parallel in H1.

Let W be the 3–manifold obtained by adding K 2–handles to H1 along these
c1, . . . , cK . Since the N pinched disks are constructed using parallel copies of the
same monogon E, each Pi can be extended to a properly embedded planar surface
P̂i in W . Here P̂i can be considered as the planar surface obtained by capping off
the ci’s and c′i’s by disks. So, by our assumption on ∂Pi, each boundary circle of
P̂i is the boundary of a pinched disk which is either some ∆̃j or a pinched disk in
int(∆̃j) formed by innermost monogons.

By the construction in Section 5, there is a rectangle in Sn with two opposite
edges glued to the boundary of each pinched disk, as shown in the shaded regions
in Figure 5.3(b). Since the ci’s are circles in E, these rectangles are in ∂W . Hence
there is such a rectangle in ∂W attached to each boundary circle of P̂i. Moreover,
for any two adjacent pinched disks, there is also a short η–arc connecting the
two rectangles, as shown in Figure 5.3(b). Similar to the argument on innermost
monogons, we may assume these ∆̃i’s have a natural order in the following sense:
If Ri is a rectangle attached to a circle in ∂P̂i with 2 ≤ i ≤ N −1, then as shown in
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Figure 5.3(c), there are two arcs ηi−1 and ηi connecting Ri to two rectangles Ri−1

and Ri+1, where Ri−1 (resp. Ri+1) is a rectangle attached to a circle in ∂P̂i−1

(resp. ∂P̂i+1). Therefore, we may assume that, if i �= 1 and i �= N , there are two
η–arcs for each component of ∂P̂i, connecting the attached rectangle to ∂P̂i−1 and
∂P̂i+1, as shown in Figure 5.3(c), where P̂i−1 and P̂i+1 are different planar surfaces.
The fact that P̂i−1 and P̂i+1 are different surfaces is important to our proof.

Since each Pi is ∂–parallel in H1, each P̂i must be ∂–parallel in W . Let Qi ⊂ ∂W
be the sub-surface of ∂W that is parallel to P̂i and with ∂Qi = ∂P̂i. Since these
P̂i’s are disjoint, any two planar surfaces Qi and Qj are either disjoint or nested.

Similar to the arguments on the innermost monogons, let m1, . . . , m2K be the
2K disks in ∂W − Sn parallel to the cores of the 2–handles added to H1. We
first suppose some Qk (1 ≤ k ≤ N) does not contain any disk mi. Since any
planar surface inside Qk does not contain any disk mi either, we may assume Qk

is innermost. Then by the arguments in Subcase 1b on the Qi’s, there must be a
rectangle R attached to ∂Qk and lying in Sn − int(Qk). So the η–arc attached to
R must lie in Qk and hence Qk must contain another planar surface Qj (j �= k),
which contradicts the assumption that Qk is innermost. Thus, we may assume each
Qk contains some disk mi.

Since K is bounded by a number independent of Sn, similar to the arguments
on the innermost monogons above, if N is large enough, we can find three nested
planar surfaces, say Qn1 ⊂ Qn2 ⊂ Qn3 , such that Qn3 − Qn2 and Qn2 − Qn1 do
not contain any disk mi. Moreover, if N is large, we can find many such nested
planar surfaces so that n2 �= 1 and n2 �= N . Since each Qk contains some disk mi,
Qn3−Qn2 and Qn2−Qn1 do not contain any other planar surface Qk. Moreover, we
can choose the Qn1 , Qn2 and Qn3 so that there is no Qk satisfying Qn1 ⊂ Qk ⊂ Qn2

or Qn2 ⊂ Qk ⊂ Qn3 .
Let α be a boundary circle of Qn2 . Let R be the rectangle attached to this

boundary circle α of Qn2 . By our assumption on n2, there is a pair of η–arcs
connecting the rectangle R to two different planar surfaces. However, by our as-
sumptions on Qn1 , Qn2 , Qn3 and α, if R ⊂ Qn2 , both η–arcs must connect R to
∂Qn3 ; if R ⊂ Sn − int(Qn2), both η–arcs must connect R to ∂Qn1 , which contra-
dicts a previous assumption that the pair of η–arcs connect R to different P̂i’s; see
Figure 5.3(c). This finishes the proof of Lemma 6.2. �
Lemma 6.3. µ is end-incompressible.

Proof of Lemma 6.3. As before, by Proposition 4.6, we can split B− and B so that
B− has no disk of contact and fully carries µ. We may also split B− so that the
number of components of M −B− is the smallest among all the branched surfaces
fully carrying µ. After some isotopy, we may assume that ∂hN(B−) ⊂ µ. Since µ
is incompressible by Lemma 6.2, ∂hN(B−) is incompressible in M − int(N(B−)).
Suppose µ is not end-incompressible and let E be a monogon in M − int(N(B−)).
Let Ê be the component of M − int(N(B−)) containing E. By Proposition 2.5,
Ê must be a solid torus of the form E × S1. Let L be the leaf that contains the
horizontal boundary component of Ê. Since |M − B−| is the smallest, we cannot
split N(B−) along L connecting Ê to other components of M − int(N(B−)).

We may assume L is an orientable surface. We claim that L must be an infinite
annulus. If L is not an infinite annulus, we can construct a compressing disk for
L by connecting two parallel copies of the monogon E and a long vertical band,
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as shown in Figure 5.3(a), similar to the construction of a pinched disk earlier.
Thus L is an infinite annulus. Since B− does not carry any 2–sphere or torus, this
contradicts Lemma 3.4. �

Since B− does not carry any 2–sphere, Lemmas 6.2 and 6.3 imply that µ is
an essential lamination. By Proposition 3.8, M is Haken, which contradicts the
hypothesis. This finishes the proof for Part A.

Part B. µ consists of compact leaves.
The only difference between the proofs for Part A and Part B is the construction

of P ×I. By Theorem 3.1, we may assume µ is either a family of parallel orientable
closed surfaces or a twisted family of parallel closed surfaces. In both cases, µ
corresponds to a rational point in PL(B). For any non-orientable surface S carried
by B, the boundary of a twisted I–bundle over S is an orientable closed surface
carried by B and corresponding to the same point in PL(B) as S. Thus, by using
the boundary of a twisted I–bundle if necessary, we may assume µ consists of
orientable closed surfaces. Let B− be the sub-branched surface of B fully carrying
µ. By Proposition 4.6, after some splittings, we may assume B− is an orientable
closed surface and N(B−) is a product of an interval and the closed surface B−.
Moreover, by Corollary 4.3 and our assumptions on B earlier, B− is a normal
surface in M with genus at least 2.

We first prove that there must be a non-separating simple closed curve in B−

that bounds an embedded disk D in M (note that int(D)∩B− may not be empty).
Since M is non-Haken, B− is compressible and we can perform a compression on
B− and get a new surface which must also be compressible. So we can successively
perform compressions on the resulting surfaces until we get a collection of 2–spheres.
If the boundary circle of every compressing disk is separating, then after some
compressions, we get an embedded torus. As every essential simple closed curve
in a torus is non-separating, we get a non-separating simple closed curve γ in B−

such that γ bounds an embedded disk D in M . Moreover, we may assume that D
is transverse to B− and every component of int(D) ∩ B− is a separating curve in
B−.

Let γ1 and γ2 be two parallel copies of γ in B−. Each γi bounds a disk Di in
M (i = 1, 2), and each Di is parallel to D. We may assume D1 ∩ D2 = ∅. Since
γ is non-separating, there is an arc α ⊂ B− connecting γ1 to γ2, forming a graph
Γ = γ1 ∪ α ∪ γ2, such that B− − Γ contains no disk component. Moreover, since
every component of int(D) ∩ B− is a separating curve in B−, we may choose α so
that α ∩ int(Di) = ∅. Let Ai (i = 1, 2) be an annular neighborhood of γi in B−

and Q a small neighborhood of α in B−. Then P = A1 ∪ Q ∪ A2 is a sub-surface
of B− and no boundary circle of P bounds a disk in B−. Let P × I = π−1(P ) and
Ai × I = π−1(Ai) (i = 1, 2), where π : N(B−) → B− is the projection. We may
consider P as the limit of {Sn∩(P ×I)} in the corresponding projective lamination
space. We will use this P × I to construct our HTH bands, as in Section 5.

As before, we may assume the sequence of surfaces {Sn} satisfy the hypotheses
of Lemma 5.7. By Lemma 4.9, we may assume Sn ∩ (γi × I) (i = 1, 2) does not
contain any circle that is trivial in Sn, for each n. If Sn ∩ (γi × I) consists of
circles, then each circle is essential in Sn and hence bounds a compressing disk in
one of the two handlebodies by Lemma 2.6. However, if Sn ∩ (γi × I) consists of
circles, by Corollary 4.2 and Example 5.2, the number of circles in Sn ∩ (γi × I)
tends to infinity as n goes to infinity. This gives a contradiction to Lemma 2.4. So
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Sn∩(γi×I) cannot be a union of circles if n is large enough. Hence we may assume
Sn ∩ (γi × I) consists of spirals for each n.

Therefore, after splitting B, we may assume Sn ∩ (Ai × I) (i = 1, 2) consists of
spiraling disks and Sn ∩ (P × I) satisfies the conditions in Example 5.4. We use the
same notation as in Section 5. Let hi be the number of components of Sn∩ (Ai×I)
(i = 1, 2), and we may assume n is sufficiently large. Since γ1 and γ2 are parallel
in B−, we may assume h1 = h2. Then we can use Example 5.5 to construction our
HTH bands and the remainder of the proof is the same as Part A. This finishes the
proof of Theorem 6.1 and Theorem 1.1. �

7. The Casson-Gordon example

Casson and Gordon gave an example of a 3–manifold that has an infinite family
of strongly irreducible Heegaard splittings with different genera [5]; see [13, 30].
By Theorem 1.1, such a 3–manifold must be Haken. In fact, it is easy to directly
show that the 3–manifolds in the Casson-Gordon example are Haken. The proof of
Theorem 1.1 indicates that there should be an incompressible surface as the limit
of the infinite family of Heegaard surfaces. In this section, we construct such an
incompressible surface.

Before carrying out the construction, we give a brief overview of the Casson-
Gordon example and we refer to [13, 30] for more details. We first take a pretzel
knot K = (p1, p2, p3, 1, p4) in S3, where |pi| ≥ 5. The standard Seifert surface
F1 from the Seifert algorithm is a free Seifert surface. Let S be a 2–sphere in S3

that cuts the knot into two tangles, as shown in Figure 7.1(a). If we flip a tangle
bounded by S along a horizontal axis by 180◦, we get the same knot with a different
projection (p1,−1, p2, p3, 1, 1, p4). By a theorem of Parris [26], the standard Seifert
surface F2 from the Seifert algorithm is also a free Seifert surface with genus(F2) =
genus(F1) + 1. By flipping the tangle k times, we get an infinite family of free
Seifert surfaces {Fk} with increasing genus.

Let η(K) be a tubular neighborhood of the knot K and let M0 = S3 − η(K)
be the knot exterior. Let Hk be the closure of a small neighborhood of Fk in
M0. So Hk is a handlebody. Since Fk is a free Seifert surface, M0 − Hk is also
a handlebody. Let K(p/q) be the closed manifold obtained by the Dehn filling to
M0 along the slope p/q. We may regard Hk as a handlebody in K(p/q). In fact,
if p = 1, K(1/q) − int(Hk) is also a handlebody and Sk = ∂Hk is a Heegaard
surface for K(1/q). Casson and Gordon showed that [5, 13, 23], if |q| ≥ 6, then
this Heegaard splitting of K(1/q) by Sk = ∂Hk is strongly irreducible. So we get
an infinite family of strongly irreducible Heegaard surfaces {Sk} for M = K(1/q)
(|q| ≥ 6).

In [13], Kobayashi gave an interpretation of the sequence of free Seifert surfaces
{Fk} through branched surfaces. Let F1 be the free Seifert surface of M0 = S3 −
η(K) above and S the punctured 2–sphere as shown in Figure 7.1(a). By fixing a
normal direction for F1 and S, we can deform F1 ∪ S into a branched surface B0,
as shown in Figure 7.1(b). Both F1 and S are carried by B0, so we can assume F1

and S lie in N(B0), a fibered neighborhood of B0. Then the canonical cutting and
pasting on F1 and S produce another Seifert surface F1 + S. Kobayashi showed
that F2 = F1 + S is the same free Seifert surface described above. Moreover,
Fk = F1 + (k − 1)S.
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Figure 7.1.

Figure 7.2.
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As we mentioned earlier, the closed manifold M = K(1/q) is Haken. The 2–
sphere S ⊂ S3 in Figure 7.1(a) cuts (S3, K) into a pair of non-trivial tangles
(E1, K1) and (E2, K2), where E1 and E2 are the pair of 3–balls in S3 bounded by
S and Ki ⊂ Ei is a pair of strings. Let η(K1) be a small neighborhood of K1 in E1.
Then Γ = ∂(E1 − η(K1)) is a closed surface of genus 2 in S3 − K. It is not hard
to see that Γ is incompressible in S3 − K (for instance see [34]). By a theorem of
Menasco [20], Γ remains incompressible after any non-trivial Dehn surgery on K.

Next we will show that Γ can be considered as the limit of the sequence of
Heegaard surfaces {Sk}.

We start with the Seifert surface F1 and consider K = ∂F1 (F1 ∩ Γ �= ∅). Let
η(F1) be a small neighborhood of F1 in S3. After moving K slightly off η(F1), we
can regard the Heegaard surface S1 of M = K(1/q) as the boundary surface of the
closure of η(F1). Here S1 ∩ Γ consists of closed curves.

Similar to the construction of the branched surface B0 above, we can deform
S1 ∪Γ into a branched surface B as shown in Figure 7.2(a). B carries both S1 and
Γ, so we can assume Γ and S1 lie in N(B) and transverse to the I–fibers. Then we
perform the canonical cutting and pasting on S1 and two parallel copies of Γ, as
shown in Figure 7.2(b). It is not hard to see that the resulting surface S1 + 2Γ is
isotopic to S2. Similarly, S3 = S2 + 2Γ and Sk = S1 + 2(k− 1)Γ. By our discussion
on projective lamination spaces, Γ is indeed the limit of the sequence of Heegaard
surfaces {Sk}.
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