Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials
Author:
Alexander I. Bufetov
Journal:
J. Amer. Math. Soc. 19 (2006), 579-623
MSC (2000):
Primary 37A25, 37F25, 37F30, 37E05, 60F05, 60J10
DOI:
https://doi.org/10.1090/S0894-0347-06-00528-5
Published electronically:
February 22, 2006
MathSciNet review:
2220100
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The aim of this paper is to prove a stretched-exponential bound for the decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations. A corollary is the Central Limit Theorem for the Teichmüller flow on the moduli space of abelian differentials with prescribed singularities.
- William A. Veech, Projective Swiss cheeses and uniquely ergodic interval exchange transformations, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10, Birkhäuser, Boston, Mass., 1981, pp. 113–193. MR 633764
- William A. Veech, Interval exchange transformations, J. Analyse Math. 33 (1978), 222–272. MR 516048, DOI https://doi.org/10.1007/BF02790174
- William A. Veech, Projective Swiss cheeses and uniquely ergodic interval exchange transformations, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10, Birkhäuser, Boston, Mass., 1981, pp. 113–193. MR 633764
- Anton Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 325–370 (English, with English and French summaries). MR 1393518
- V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR 168 (1966), 1009–1011 (Russian). MR 0199347
- Gérard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), no. 4, 315–328 (French). MR 543205, DOI https://doi.org/10.4064/aa-34-4-315-328
- M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), 739–741 (Russian). MR 0251785
- Carlangelo Liverani, Central limit theorem for deterministic systems, International Conference on Dynamical Systems (Montevideo, 1995) Pitman Res. Notes Math. Ser., vol. 362, Longman, Harlow, 1996, pp. 56–75. MR 1460797
- Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25–31. MR 357739, DOI https://doi.org/10.1007/BF01236981
- Giovanni Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), no. 1, 1–103. MR 1888794, DOI https://doi.org/10.2307/3062150
- Lai-Sang Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153–188. MR 1750438, DOI https://doi.org/10.1007/BF02808180
- Véronique Maume-Deschamps, Projective metrics and mixing properties on towers, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3371–3389. MR 1828610, DOI https://doi.org/10.1090/S0002-9947-01-02786-6
- Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 0399421
- L. A. Bunimovich and Ya. G. Sinaĭ, Statistical properties of Lorentz gas with periodic configuration of scatterers, Comm. Math. Phys. 78 (1980/81), no. 4, 479–497. MR 606459
- Ian Melbourne and Andrei Török, Statistical limit theorems for suspension flows, Israel J. Math. 144 (2004), 191–209. MR 2121540, DOI https://doi.org/10.1007/BF02916712
- A. N. Kolmogorov, A local limit theorem for classical Markov chains, Izvestiya Akad. Nauk SSSR. Ser. Mat. 13 (1949), 281–300 (Russian). MR 0031216 viana Marcelo Viana, Stochastic Dynamics of Deterministic Systems, Brazilian Mathematics Colloquium 1997, IMPA; online at http://www.impa.br/~viana.
- Caroline Series, The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), no. 1, 69–80. MR 810563, DOI https://doi.org/10.1112/jlms/s2-31.1.69
- Caroline Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 601–625. MR 873435, DOI https://doi.org/10.1017/S0143385700003722
- S. P. Kerckhoff, Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynam. Systems 5 (1985), no. 2, 257–271. MR 796753, DOI https://doi.org/10.1017/S0143385700002881
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169–200. MR 644018, DOI https://doi.org/10.2307/1971341
- J. L. Doob, Stochastic processes, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. Reprint of the 1953 original; A Wiley-Interscience Publication. MR 1038526
- V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499–530 (Russian). MR 0143873
- V. A. Rohlin, New progress in the theory of transformations with invariant measure., Russian Math. Surveys 15 (1960), no. 4, 1–22. MR 0132155, DOI https://doi.org/10.1070/RM1960v015n04ABEH004095
- Ya. G. Sinaĭ, Topics in ergodic theory, Princeton Mathematical Series, vol. 44, Princeton University Press, Princeton, NJ, 1994. MR 1258087
- Maxim Kontsevich and Anton Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003), no. 3, 631–678. MR 2000471, DOI https://doi.org/10.1007/s00222-003-0303-x
- I. P. Kornfel′d, Ya. G. Sinaĭ, and S. V. Fomin, Ergodicheskaya teoriya, “Nauka”, Moscow, 1980 (Russian). MR 610981
- John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), no. 3-4, 221–274. MR 523212, DOI https://doi.org/10.1007/BF02395062
- M. Kontsevich, Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996) Adv. Ser. Math. Phys., vol. 24, World Sci. Publ., River Edge, NJ, 1997, pp. 318–332. MR 1490861 athreya J. Athreya, Quantitative recurrence and large deviations for Teichmüller geodesic flows, preprint.
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 37A25, 37F25, 37F30, 37E05, 60F05, 60J10
Retrieve articles in all journals with MSC (2000): 37A25, 37F25, 37F30, 37E05, 60F05, 60J10
Additional Information
Alexander I. Bufetov
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544
Address at time of publication:
(Until June 30, 2006) Department of Mathematics, The University of Chicago, 5734 South University Avenue, Chicago, Illinois 60637; (starting July 1, 2006) Department of Mathematics, Rice University, MS 136, 6100 Main Street, Houston, Texas 77251-1892
Email:
bufetov@math.rice.edu
Keywords:
Interval exchange transformations,
Rauzy induction,
speed of mixing,
Teichmüller geodesic flow,
central limit theorem.
Received by editor(s):
October 6, 2004
Published electronically:
February 22, 2006
Dedicated:
Se non quel tanto che n’accende il sole. Michelangelo Buonarroti
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.