The units of a ring spectrum and a logarithmic cohomology operation
HTML articles powered by AMS MathViewer
- by Charles Rezk;
- J. Amer. Math. Soc. 19 (2006), 969-1014
- DOI: https://doi.org/10.1090/S0894-0347-06-00521-2
- Published electronically: February 8, 2006
- PDF | Request permission
Abstract:
We construct a “logarithmic” cohomology operation on Morava $E$-theory, which is a homomorphism defined on the multiplicative group of invertible elements in the ring $E^0(K)$ of a space $K$. We obtain a formula for this map in terms of the action of Hecke operators on Morava $E$-theory. Our formula is closely related to that for an Euler factor of the Hecke $L$-function of an automorphic form.References
- Matthew Ando, Michael J. Hopkins, and Neil P. Strickland, The sigma orientation is an $H_\infty$ map, Amer. J. Math. 126 (2004), no. 2, 247–334. MR 2045503, DOI 10.1353/ajm.2004.0008
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 242802
- Matthew Ando, Isogenies of formal group laws and power operations in the cohomology theories $E_n$, Duke Math. J. 79 (1995), no. 2, 423–485. MR 1344767, DOI 10.1215/S0012-7094-95-07911-3
- M. F. Atiyah and G. B. Segal, Exponential isomorphisms for $\lambda$-rings, Quart. J. Math. Oxford Ser. (2) 22 (1971), 371–378. MR 291250, DOI 10.1093/qmath/22.3.371
- A. K. Bousfield and E. M. Friedlander, Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin-New York, 1978, pp. 80–130. MR 513569
- Martin Bendersky and John R. Hunton, On the coalgebraic ring and Bousfield-Kan spectral sequence for a Landweber exact spectrum, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 3, 513–532. MR 2096616, DOI 10.1017/S0013091503000518
- R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_\infty$ ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR 836132, DOI 10.1007/BFb0075405
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- A. K. Bousfield, Uniqueness of infinite deloopings for $K$-theoretic spaces, Pacific J. Math. 129 (1987), no. 1, 1–31. MR 901254, DOI 10.2140/pjm.1987.129.1
- A. K. Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2391–2426. MR 1814075, DOI 10.1090/S0002-9947-00-02649-0
- Albrecht Dold, Decomposition theorems for $S(n)$-complexes, Ann. of Math. (2) 75 (1962), 8–16. MR 137113, DOI 10.2307/1970415
- A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR 1417719, DOI 10.1090/surv/047
- P. G. Goerss and M. J. Hopkins, Moduli spaces of commutative ring spectra, Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 151–200.
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- David Gluck, Idempotent formula for the Burnside algebra with applications to the $p$-subgroup simplicial complex, Illinois J. Math. 25 (1981), no. 1, 63–67. MR 602896
- Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000), no. 3, 553–594. MR 1758754, DOI 10.1090/S0894-0347-00-00332-5
- Luke Hodgkin, The $K$-theory of some wellknown spaces. I. $QS^{0}$, Topology 11 (1972), 371–375. MR 331367, DOI 10.1016/0040-9383(72)90032-8
- M. J. Hopkins, Algebraic topology and modular forms, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 291–317. MR 1989190
- Mark Hovey and Neil P. Strickland, Morava $K$-theories and localisation, Mem. Amer. Math. Soc. 139 (1999), no. 666, viii+100. MR 1601906, DOI 10.1090/memo/0666
- Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208. MR 1695653, DOI 10.1090/S0894-0347-99-00320-3
- Takuji Kashiwabara, Hopf rings and unstable operations, J. Pure Appl. Algebra 94 (1994), no. 2, 183–193. MR 1282839, DOI 10.1016/0022-4049(94)90032-9
- Nicholas J. Kuhn, Localization of André-Quillen-Goodwillie towers, and the periodic homology of infinite loopspaces, preprint.
- Nicholas J. Kuhn, Morava $K$-theories and infinite loop spaces, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 243–257. MR 1000381, DOI 10.1007/BFb0085232
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Jonathan Lubin and John Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 49–59. MR 238854, DOI 10.24033/bsmf.1633
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 420609, DOI 10.1007/BFb0068547
- J. Peter May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics, Vol. 577, Springer-Verlag, Berlin-New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave. MR 494077
- J. P. May, Multiplicative infinite loop space theory, J. Pure Appl. Algebra 26 (1982), no. 1, 1–69. MR 669843, DOI 10.1016/0022-4049(82)90029-9
- M. A. Mandell and J. P. May, Equivariant orthogonal spectra and $S$-modules, Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108. MR 1922205, DOI 10.1090/memo/0755
- Birgit Richter and Alan Robinson, Gamma homology of group algebras and of polynomial algebras, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 453–461. MR 2066509, DOI 10.1090/conm/346/06298
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, NJ, 1971. Publications of the Mathematical Society of Japan, No. 11. MR 314766
- Neil P. Strickland and Paul R. Turner, Rational Morava $E$-theory and $DS^0$, Topology 36 (1997), no. 1, 137–151. MR 1410468, DOI 10.1016/0040-9383(95)00073-9
- Neil P. Strickland, Finite subgroups of formal groups, J. Pure Appl. Algebra 121 (1997), no. 2, 161–208. MR 1473889, DOI 10.1016/S0022-4049(96)00113-2
- N. P. Strickland, Morava $E$-theory of symmetric groups, Topology 37 (1998), no. 4, 757–779. MR 1607736, DOI 10.1016/S0040-9383(97)00054-2
- Richard Woolfson, Hyper-$\Gamma$-spaces and hyperspectra, Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 118, 229–255. MR 534835, DOI 10.1093/qmath/30.2.229
Bibliographic Information
- Charles Rezk
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
- MR Author ID: 638495
- ORCID: 0000-0003-4111-893X
- Email: rezk@math.uiuc.edu
- Received by editor(s): April 5, 2005
- Published electronically: February 8, 2006
- Additional Notes: This work was supported by the National Science Foundation under award DMS-0203936.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 969-1014
- MSC (2000): Primary 55N22; Secondary 55P43, 55S05, 55S25, 55P47, 55P60, 55N34, 11F25
- DOI: https://doi.org/10.1090/S0894-0347-06-00521-2
- MathSciNet review: 2219307