Divisibility of the stable Miller-Morita-Mumford classes
Authors:
Soren Galatius, Ib Madsen and Ulrike Tillmann
Journal:
J. Amer. Math. Soc. 19 (2006), 759-779
MSC (2000):
Primary 57R20, 55P47
DOI:
https://doi.org/10.1090/S0894-0347-06-00523-6
Published electronically:
March 17, 2006
MathSciNet review:
2219303
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We determine the sublattice generated by the Miller-Morita- Mumford classes $\kappa _i$ in the torsion free quotient of the integral cohomology ring of the stable mapping class group. We further decide when the mod $p$ reductions $\kappa _i \in H^* (B\Gamma _\infty ; \mathbb F_p)$ vanish.
- J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138. MR 0251716
- J. F. Adams, On the groups $J(X)$. II, Topology 3 (1965), 137–171. MR 198468, DOI https://doi.org/10.1016/0040-9383%2865%2990040-6
- Toshiyuki Akita, Nilpotency and triviality of mod $p$ Morita-Mumford classes of mapping class groups of surfaces, Nagoya Math. J. 165 (2002), 1–22. MR 1892095, DOI https://doi.org/10.1017/S0027763000008114
- James C. Becker and Reinhard E. Schultz, Axioms for bundle transfers and traces, Math. Z. 227 (1998), no. 4, 583–605. MR 1621939, DOI https://doi.org/10.1007/PL00004392
- A. Jon Berrick, An approach to algebraic $K$-theory, Research Notes in Mathematics, vol. 56, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649409
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- William Browder, Torsion in $H$-spaces, Ann. of Math. (2) 74 (1961), 24–51. MR 124891, DOI https://doi.org/10.2307/1970305
- M. C. Crabb, ${\bf Z}/2$-homotopy theory, London Mathematical Society Lecture Note Series, vol. 44, Cambridge University Press, Cambridge-New York, 1980. MR 591680
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- Otto Forster, Lectures on Riemann surfaces, Graduate Texts in Mathematics, vol. 81, Springer-Verlag, New York, 1991. Translated from the 1977 German original by Bruce Gilligan; Reprint of the 1981 English translation. MR 1185074
- Søren Galatius, Mod $p$ homology of the stable mapping class group, Topology 43 (2004), no. 5, 1105–1132. MR 2079997, DOI https://doi.org/10.1016/j.top.2004.01.011 [G2]G2 S. Galatius, Secondary characteristic classes of surface bundles, preprint, math.AT/ 0402226.
- John Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), no. 2, 221–239. MR 700769, DOI https://doi.org/10.1007/BF01389321
- John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. MR 786348, DOI https://doi.org/10.2307/1971172
- N. V. Ivanov, Stabilization of the homology of Teichmüller modular groups, Algebra i Analiz 1 (1989), no. 3, 110–126 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 3, 675–691. MR 1015128
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482
- Ib Madsen, Higher torsion in $SG$ and $BSG$, Math. Z. 143 (1975), 55–80. MR 375307, DOI https://doi.org/10.1007/BF01173051
- Ib Madsen and Christian Schlichtkrull, The circle transfer and $K$-theory, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 307–328. MR 1778114, DOI https://doi.org/10.1090/conm/258/1778114
- Ib Madsen and Ulrike Tillmann, The stable mapping class group and $Q(\Bbb C \mathrm P^\infty _+)$, Invent. Math. 145 (2001), no. 3, 509–544. MR 1856399, DOI https://doi.org/10.1007/PL00005807
- John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554 [MW]MW I. Madsen, M. Weiss, The stable moduli space of Riemann surfaces: Mumford’s conjecture, math.AT/0212321.
- Edward Y. Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986), no. 1, 1–14. MR 857372
- Shigeyuki Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), no. 3, 551–577. MR 914849, DOI https://doi.org/10.1007/BF01389178
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- Douglas C. Ravenel, The Segal conjecture for cyclic groups and its consequences, Amer. J. Math. 106 (1984), no. 2, 415–446. With an appendix by Haynes R. Miller. MR 737779, DOI https://doi.org/10.2307/2374309
- Graeme Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford Ser. (2) 24 (1973), 1–5. MR 319183, DOI https://doi.org/10.1093/qmath/24.1.1
- Stephan Stolz, Beziehungen zwischen Transfer und $J$-Homomorphismus, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 125, Universität Bonn, Mathematisches Institut, Bonn, 1980 (German). Dissertation, Universität Bonn, Bonn, 1979. MR 598816
- Ulrike Tillmann, On the homotopy of the stable mapping class group, Invent. Math. 130 (1997), no. 2, 257–275. MR 1474157, DOI https://doi.org/10.1007/s002220050184
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 57R20, 55P47
Retrieve articles in all journals with MSC (2000): 57R20, 55P47
Additional Information
Soren Galatius
Affiliation:
Department of Mathematics, Stanford University, Stanford, California 94305
ORCID:
0000-0002-1015-7322
Email:
galatius@math.stanford.edu
Ib Madsen
Affiliation:
Matematisk Institut, Aarhus Universitet, 8000 Aarhus C, Denmark
Email:
imadsen@imf.au.dk
Ulrike Tillmann
Affiliation:
Mathematical Institute, 24-29 St. Giles Street, Oxford OX1 3LB, United Kingdom
Email:
tillmann@maths.ox.ac.uk
Keywords:
Mapping class group,
characteristic classes,
surface bundles
Received by editor(s):
October 31, 2004
Published electronically:
March 17, 2006
Additional Notes:
The third author was supported by an Advanced Fellowship of the EPSRC
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.