Divisibility of the stable Miller-Morita-Mumford classes
HTML articles powered by AMS MathViewer
- by Soren Galatius, Ib Madsen and Ulrike Tillmann;
- J. Amer. Math. Soc. 19 (2006), 759-779
- DOI: https://doi.org/10.1090/S0894-0347-06-00523-6
- Published electronically: March 17, 2006
- PDF | Request permission
Abstract:
We determine the sublattice generated by the Miller-Morita- Mumford classes $\kappa _i$ in the torsion free quotient of the integral cohomology ring of the stable mapping class group. We further decide when the mod $p$ reductions $\kappa _i \in H^* (B\Gamma _\infty ; \mathbb F_p)$ vanish.References
- J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Lecture Notes in Math., No. 99, Springer, Berlin-New York, 1969, pp. 1–138. MR 251716
- J. F. Adams, On the groups $J(X)$. II, Topology 3 (1965), 137–171. MR 198468, DOI 10.1016/0040-9383(65)90040-6
- Toshiyuki Akita, Nilpotency and triviality of mod $p$ Morita-Mumford classes of mapping class groups of surfaces, Nagoya Math. J. 165 (2002), 1–22. MR 1892095, DOI 10.1017/S0027763000008114
- James C. Becker and Reinhard E. Schultz, Axioms for bundle transfers and traces, Math. Z. 227 (1998), no. 4, 583–605. MR 1621939, DOI 10.1007/PL00004392
- A. Jon Berrick, An approach to algebraic $K$-theory, Research Notes in Mathematics, vol. 56, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649409
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 365573, DOI 10.1007/978-3-540-38117-4
- William Browder, Torsion in $H$-spaces, Ann. of Math. (2) 74 (1961), 24–51. MR 124891, DOI 10.2307/1970305
- M. C. Crabb, $\textbf {Z}/2$-homotopy theory, London Mathematical Society Lecture Note Series, vol. 44, Cambridge University Press, Cambridge-New York, 1980. MR 591680, DOI 10.1017/CBO9780511662690
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- Otto Forster, Lectures on Riemann surfaces, Graduate Texts in Mathematics, vol. 81, Springer-Verlag, New York, 1991. Translated from the 1977 German original by Bruce Gilligan; Reprint of the 1981 English translation. MR 1185074
- Søren Galatius, Mod $p$ homology of the stable mapping class group, Topology 43 (2004), no. 5, 1105–1132. MR 2079997, DOI 10.1016/j.top.2004.01.011 [G2]G2 S. Galatius, Secondary characteristic classes of surface bundles, preprint, math.AT/ 0402226.
- John Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), no. 2, 221–239. MR 700769, DOI 10.1007/BF01389321
- John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. MR 786348, DOI 10.2307/1971172
- N. V. Ivanov, Stabilization of the homology of Teichmüller modular groups, Algebra i Analiz 1 (1989), no. 3, 110–126 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 3, 675–691. MR 1015128
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Ib Madsen, Higher torsion in $SG$ and $BSG$, Math. Z. 143 (1975), 55–80. MR 375307, DOI 10.1007/BF01173051
- Ib Madsen and Christian Schlichtkrull, The circle transfer and $K$-theory, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 307–328. MR 1778114, DOI 10.1090/conm/258/1778114
- Ib Madsen and Ulrike Tillmann, The stable mapping class group and $Q(\Bbb C \mathrm P^\infty _+)$, Invent. Math. 145 (2001), no. 3, 509–544. MR 1856399, DOI 10.1007/PL00005807
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974. MR 440554, DOI 10.1515/9781400881826 [MW]MW I. Madsen, M. Weiss, The stable moduli space of Riemann surfaces: Mumford’s conjecture, math.AT/0212321.
- Edward Y. Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986), no. 1, 1–14. MR 857372
- Shigeyuki Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), no. 3, 551–577. MR 914849, DOI 10.1007/BF01389178
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- Douglas C. Ravenel, The Segal conjecture for cyclic groups and its consequences, Amer. J. Math. 106 (1984), no. 2, 415–446. With an appendix by Haynes R. Miller. MR 737779, DOI 10.2307/2374309
- Graeme Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford Ser. (2) 24 (1973), 1–5. MR 319183, DOI 10.1093/qmath/24.1.1
- Stephan Stolz, Beziehungen zwischen Transfer und $J$-Homomorphismus, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 125, Universität Bonn, Mathematisches Institut, Bonn, 1980 (German). Dissertation, Universität Bonn, Bonn, 1979. MR 598816
- Ulrike Tillmann, On the homotopy of the stable mapping class group, Invent. Math. 130 (1997), no. 2, 257–275. MR 1474157, DOI 10.1007/s002220050184
Bibliographic Information
- Soren Galatius
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- ORCID: 0000-0002-1015-7322
- Email: galatius@math.stanford.edu
- Ib Madsen
- Affiliation: Matematisk Institut, Aarhus Universitet, 8000 Aarhus C, Denmark
- Email: imadsen@imf.au.dk
- Ulrike Tillmann
- Affiliation: Mathematical Institute, 24-29 St. Giles Street, Oxford OX1 3LB, United Kingdom
- Email: tillmann@maths.ox.ac.uk
- Received by editor(s): October 31, 2004
- Published electronically: March 17, 2006
- Additional Notes: The third author was supported by an Advanced Fellowship of the EPSRC
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 759-779
- MSC (2000): Primary 57R20, 55P47
- DOI: https://doi.org/10.1090/S0894-0347-06-00523-6
- MathSciNet review: 2219303