Superrigidity for irreducible lattices and geometric splitting
HTML articles powered by AMS MathViewer
- by Nicolas Monod;
- J. Amer. Math. Soc. 19 (2006), 781-814
- DOI: https://doi.org/10.1090/S0894-0347-06-00525-X
- Published electronically: March 21, 2006
- PDF | Request permission
Abstract:
We prove general superrigidity results for actions of irreducible lattices on CAT$(0)$ spaces, first in terms of the ideal boundary, and then for the intrinsic geometry (also for infinite-dimensional spaces). In particular, one obtains a new and self-contained proof of Margulis’ superrigidity theorem for uniform irreducible lattices in non-simple groups. The proofs rely on simple geometric arguments, including a splitting theorem which can be viewed as an infinite-dimensional (and singular) generalization of the Lawson-Yau/Gromoll-Wolf theorem. Appendix A gives a very elementary proof of commensurator superrigidity; Appendix B proves that all our results also hold for certain non-uniform lattices.References
- Norbert A’Campo and Marc Burger, Réseaux arithmétiques et commensurateur d’après G. A. Margulis, Invent. Math. 116 (1994), no. 1-3, 1–25 (French). MR 1253187, DOI 10.1007/BF01231555
- Michael T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), no. 4, 701–721 (1984). MR 730923
- Werner Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin. MR 1377265, DOI 10.1007/978-3-0348-9240-7
- M. B. Bekka, On uniqueness of invariant means, Proc. Amer. Math. Soc. 126 (1998), no. 2, 507–514. MR 1415573, DOI 10.1090/S0002-9939-98-04044-1
- Mohammed E. B. Bekka and Alain Valette, Kazhdan’s property $(\textrm {T})$ and amenable representations, Math. Z. 212 (1993), no. 2, 293–299. MR 1202813, DOI 10.1007/BF02571659
- Vitaly Bergelson and Joseph Rosenblatt, Mixing actions of groups, Illinois J. Math. 32 (1988), no. 1, 65–80. MR 921351
- Philippe Blanc, Sur la cohomologie continue des groupes localement compacts, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 137–168 (French). MR 543215, DOI 10.24033/asens.1364
- Nicolas Bourbaki, Éléments de mathématique. Fasc. II. Livre III: Topologie générale. Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1142, Hermann, Paris, 1965 (French). Quatrième édition. MR 244924
- N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule III.) Livre III; Topologie générale. Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1143, Hermann, Paris, 1960 (French). Troisième édition revue et augmentée. MR 140603
- N. Bourbaki, Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1306, Hermann, Paris, 1963 (French). MR 179291
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Marc Burger, Rigidity properties of group actions on $\textrm {CAT}(0)$-spaces, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 761–769. MR 1403976
- Marc Burger, Alessandra Iozzi, and Nicolas Monod, Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. 22 (2005), 1331–1369. MR 2152540, DOI 10.1155/IMRN.2005.1331
- Jan Dymara and Tadeusz Januszkiewicz, Cohomology of buildings and their automorphism groups, Invent. Math. 150 (2002), no. 3, 579–627. MR 1946553, DOI 10.1007/s00222-002-0242-y
- Patrick Eberlein, Isometry groups of simply connected manifolds of nonpositive curvature. II, Acta Math. 149 (1982), no. 1-2, 41–69. MR 674166, DOI 10.1007/BF02392349
- É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648, DOI 10.1007/978-1-4684-9167-8
- Detlef Gromoll and Joseph A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971), 545–552. MR 281122, DOI 10.1090/S0002-9904-1971-12747-7
- M. Gromov and P. Pansu, Rigidity of lattices: an introduction, Geometric topology: recent developments (Montecatini Terme, 1990) Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 39–137. MR 1168043, DOI 10.1007/BFb0094289
- Alain Guichardet, Sur la cohomologie des groupes topologiques. II, Bull. Sci. Math. (2) 96 (1972), 305–332 (French). MR 340464
- Jürgen Jost, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1997. MR 1451625, DOI 10.1007/978-3-0348-8918-6
- Jürgen Jost and Shing-Tung Yau, Applications of quasilinear PDE to algebraic geometry and arithmetic lattices, Algebraic geometry and related topics (Inchon, 1992) Conf. Proc. Lecture Notes Algebraic Geom., I, Int. Press, Cambridge, MA, 1993, pp. 169–193. MR 1285380
- Jürgen Jost and Shing-Tung Yau, Harmonic maps and superrigidity, Tsing Hua lectures on geometry & analysis (Hsinchu, 1990–1991) Int. Press, Cambridge, MA, 1997, pp. 213–246. MR 1482040
- Jürgen Jost and Shing-Tung Yau, Harmonic maps and rigidity theorems for spaces of nonpositive curvature, Comm. Anal. Geom. 7 (1999), no. 4, 681–694. MR 1714940, DOI 10.4310/CAG.1999.v7.n4.a1
- Shizuo Kakutani and Kunihiko Kodaira, Über das Haarsche Mass in der lokal bikompakten Gruppe, Proc. Imp. Acad. Tokyo 20 (1944), 444–450 (German). MR 14401
- Nicholas J. Korevaar and Richard M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), no. 3-4, 561–659. MR 1266480, DOI 10.4310/CAG.1993.v1.n4.a4
- H. Blaine Lawson Jr. and Shing Tung Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972), 211–228. MR 334083
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6 [M2]MargulisCOM —, Superrigidity for commensurability subgroups and generalized harmonic maps, unpublished manuscript.
- Ngaiming Mok, Yum Tong Siu, and Sai-Kee Yeung, Geometric superrigidity, Invent. Math. 113 (1993), no. 1, 57–83. MR 1223224, DOI 10.1007/BF01244302
- Nicolas Monod, Arithmeticity vs. nonlinearity for irreducible lattices, Geom. Dedicata 112 (2005), 225–237. MR 2163901, DOI 10.1007/s10711-004-6162-9
- Nicolas Monod and Yehuda Shalom, Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Differential Geom. 67 (2004), no. 3, 395–455. MR 2153026
- Nicolas Monod and Yehuda Shalom, Negative curvature from a cohomological viewpoint and cocycle superrigidity, C. R. Math. Acad. Sci. Paris 337 (2003), no. 10, 635–638 (English, with English and French summaries). MR 2030102, DOI 10.1016/j.crma.2003.10.002
- Bertrand Rémy, Groupes de Kac-Moody déployés et presque déployés, Astérisque 277 (2002), viii+348 (French, with English and French summaries). MR 1909671 [R1]RemySURV —, Kac-Moody groups as discrete groups, Preprint, 2003.
- Bertrand Rémy, Integrability of induction cocycles for Kac-Moody groups, Math. Ann. 333 (2005), no. 1, 29–43. MR 2169827, DOI 10.1007/s00208-005-0663-1
- Ju. G. Rešetnjak, Non-expansive maps in a space of curvature no greater than $K$, Sibirsk. Mat. Ž. 9 (1968), 918–927 (Russian). MR 244922
- Viktor Schroeder, A splitting theorem for spaces of nonpositive curvature, Invent. Math. 79 (1985), no. 2, 323–327. MR 778131, DOI 10.1007/BF01388977
- Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000), no. 1, 1–54. MR 1767270, DOI 10.1007/s002220000064
- J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196–220 (French). MR 277536, DOI 10.1515/crll.1971.247.196
- T. N. Venkataramana, On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Invent. Math. 92 (1988), no. 2, 255–306. MR 936083, DOI 10.1007/BF01404454
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Nicolas Monod
- Affiliation: Department of Mathematics, The University of Chicago, 5734 University Avenue, Chicago, Illinois 60637
- Address at time of publication: Université de Genève, 2-4, rue du Lièvre, CP 64, CH-1211 Genève 4, Switzerland
- MR Author ID: 648787
- Email: nicolas.monod@unige.ch
- Received by editor(s): December 13, 2004
- Published electronically: March 21, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 19 (2006), 781-814
- MSC (2000): Primary 22Exx; Secondary 53Cxx, 20F65
- DOI: https://doi.org/10.1090/S0894-0347-06-00525-X
- MathSciNet review: 2219304