Weil-Petersson volumes and intersection theory on the moduli space of curves
HTML articles powered by AMS MathViewer
- by Maryam Mirzakhani;
- J. Amer. Math. Soc. 20 (2007), 1-23
- DOI: https://doi.org/10.1090/S0894-0347-06-00526-1
- Published electronically: March 8, 2006
- PDF | Request permission
Abstract:
In this paper, we establish a relationship between the Weil- Petersson volume $V_{g,n}(b)$ of the moduli space $\mathcal {M}_{g,n}(b)$ of hyperbolic Riemann surfaces with geodesic boundary components of lengths $b_{1}$, …, $b_{n}$, and the intersection numbers of tautological classes on the moduli space $\overline {\mathcal {M}}_{g,n}$ of stable curves. As a result, by using the recursive formula for $V_{g,n}(b)$ obtained in the author’s Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, preprint, 2003, we derive a new proof of the Virasoro constraints for a point. This result is equivalent to the Witten-Kontsevich formula.References
- Enrico Arbarello, Sketches of KdV, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000) Contemp. Math., vol. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 9–69. MR 1941573, DOI 10.1090/conm/312/05391
- Lipman Bers, Spaces of degenerating Riemann surfaces, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Ann. of Math. Stud., No. 79, Princeton Univ. Press, Princeton, NJ, 1974, pp. 43–55. MR 361051
- M. Boggi and M. Pikaart, Galois covers of moduli of curves, Compositio Math. 120 (2000), no. 2, 171–191. MR 1739177, DOI 10.1023/A:1001731524036
- Peter Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1183224
- Robbert Dijkgraaf, Herman Verlinde, and Erik Verlinde, Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity, Nuclear Phys. B 348 (1991), no. 3, 435–456. MR 1083914, DOI 10.1016/0550-3213(91)90199-8
- William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), no. 2, 200–225. MR 762512, DOI 10.1016/0001-8708(84)90040-9
- William M. Goldman, Ergodic theory on moduli spaces, Ann. of Math. (2) 146 (1997), no. 3, 475–507. MR 1491446, DOI 10.2307/2952454
- Victor Guillemin, Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Progress in Mathematics, vol. 122, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301331, DOI 10.1007/978-1-4612-0269-1
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481, DOI 10.1007/978-4-431-68174-8
- C. Itzykson and J.-B. Zuber, Combinatorics of the modular group. II. The Kontsevich integrals, Internat. J. Modern Phys. A 7 (1992), no. 23, 5661–5705. MR 1180858, DOI 10.1142/S0217751X92002581
- R. Kaufmann, Yu. Manin, and D. Zagier, Higher Weil-Petersson volumes of moduli spaces of stable $n$-pointed curves, Comm. Math. Phys. 181 (1996), no. 3, 763–787. MR 1414310, DOI 10.1007/BF02101297
- Frances Kirwan, Momentum maps and reduction in algebraic geometry, Differential Geom. Appl. 9 (1998), no. 1-2, 135–171. Symplectic geometry. MR 1636303, DOI 10.1016/S0926-2245(98)00020-5
- Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758, DOI 10.1007/BF02099526
- Eduard Looijenga, Intersection theory on Deligne-Mumford compactifications (after Witten and Kontsevich), Astérisque 216 (1993), Exp. No. 768, 4, 187–212. Séminaire Bourbaki, Vol. 1992/93. MR 1246398
- Eduard Looijenga, Smooth Deligne-Mumford compactifications by means of Prym level structures, J. Algebraic Geom. 3 (1994), no. 2, 283–293. MR 1257324
- Yuri I. Manin and Peter Zograf, Invertible cohomological field theories and Weil-Petersson volumes, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 519–535 (English, with English and French summaries). MR 1775360, DOI 10.5802/aif.1764
- Howard Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J. 43 (1976), no. 3, 623–635. MR 417456
- Dusa McDuff, Introduction to symplectic topology, Symplectic geometry and topology (Park City, UT, 1997) IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 5–33. MR 1702941, DOI 10.1090/pcms/007/02
- Greg McShane, Simple geodesics and a series constant over Teichmuller space, Invent. Math. 132 (1998), no. 3, 607–632. MR 1625712, DOI 10.1007/s002220050235
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974. MR 440554, DOI 10.1515/9781400881826 Mirzakhani:volume M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Preprint, 2003.
- Toshihiro Nakanishi and Marjatta Näätänen, Areas of two-dimensional moduli spaces, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3241–3252. MR 1844999, DOI 10.1090/S0002-9939-01-06010-5
- Andrei Okounkov, Random trees and moduli of curves, Asymptotic combinatorics with applications to mathematical physics (St. Petersburg, 2001) Lecture Notes in Math., vol. 1815, Springer, Berlin, 2003, pp. 89–126. MR 2009837, DOI 10.1007/3-540-44890-X_{5} P:Oko2 A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and matrix models, I, Preprint.
- R. C. Penner, Weil-Petersson volumes, J. Differential Geom. 35 (1992), no. 3, 559–608. MR 1163449, DOI 10.4310/jdg/1214448257
- Jonathan Weitsman, Geometry of the intersection ring of the moduli space of flat connections and the conjectures of Newstead and Witten, Topology 37 (1998), no. 1, 115–132. MR 1480881, DOI 10.1016/S0040-9383(96)00036-5
- Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR 1144529
- Edward Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), no. 4, 303–368. MR 1185834, DOI 10.1016/0393-0440(92)90034-X
- Scott Wolpert, An elementary formula for the Fenchel-Nielsen twist, Comment. Math. Helv. 56 (1981), no. 1, 132–135. MR 615620, DOI 10.1007/BF02566203
- Scott Wolpert, On the homology of the moduli space of stable curves, Ann. of Math. (2) 118 (1983), no. 3, 491–523. MR 727702, DOI 10.2307/2006980
- Scott A. Wolpert, On obtaining a positive line bundle from the Weil-Petersson class, Amer. J. Math. 107 (1985), no. 6, 1485–1507 (1986). MR 815769, DOI 10.2307/2374413
- Scott Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985), no. 4, 969–997. MR 796909, DOI 10.2307/2374363
- Peter Zograf, The Weil-Petersson volume of the moduli space of punctured spheres, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) Contemp. Math., vol. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 367–372. MR 1234274, DOI 10.1090/conm/150/01300
Bibliographic Information
- Maryam Mirzakhani
- Affiliation: Department of Mathematics, Princeton University, Princeton, NJ 08544
- Received by editor(s): April 6, 2004
- Published electronically: March 8, 2006
- Additional Notes: The author is supported by a Clay fellowship.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 1-23
- MSC (2000): Primary 32G15, 14H15
- DOI: https://doi.org/10.1090/S0894-0347-06-00526-1
- MathSciNet review: 2257394