Intermediate subfactors with no extra structure
HTML articles powered by AMS MathViewer
- by Pinhas Grossman and Vaughan F. R. Jones
- J. Amer. Math. Soc. 20 (2007), 219-265
- DOI: https://doi.org/10.1090/S0894-0347-06-00531-5
- Published electronically: May 10, 2006
- PDF | Request permission
Abstract:
If $N\subseteq P,Q\subseteq M$ are type II$_1$ factors with $N’\cap M =\mathbb C id$ and $[M:N]<\infty$ we show that restrictions on the standard invariants of the elementary inclusions $N\subseteq P$, $N\subseteq Q$, $P\subseteq M$ and $Q\subseteq M$ imply drastic restrictions on the indices and angles between the subfactors. In particular we show that if these standard invariants are trivial and the conditional expectations onto $P$ and $Q$ do not commute, then $[M:N]$ is $6$ or $6+4\sqrt 2$. In the former case $N$ is the fixed point algebra for an outer action of $S_3$ on $M$ and the angle is $\pi /3$, and in the latter case the angle is $\cos ^{-1}(\sqrt 2-1)$ and an example may be found in the GHJ subfactor family. The techniques of proof rely heavily on planar algebras.References
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Dietmar Bisch, A note on intermediate subfactors, Pacific J. Math. 163 (1994), no. 2, 201–216. MR 1262294, DOI 10.2140/pjm.1994.163.201
- Dietmar Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Operator algebras and their applications (Waterloo, ON, 1994/1995) Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 13–63. MR 1424954, DOI 10.1007/s002220050137
- Dietmar Bisch and Vaughan Jones, Algebras associated to intermediate subfactors, Invent. Math. 128 (1997), no. 1, 89–157. MR 1437496, DOI 10.1007/s002220050137
- Dietmar Bisch and Vaughan Jones, A note on free composition of subfactors, Geometry and physics (Aarhus, 1995) Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, 1997, pp. 339–361. MR 1423180
- Dietmar Bisch and Vaughan Jones, Singly generated planar algebras of small dimension, Duke Math. J. 101 (2000), no. 1, 41–75. MR 1733737, DOI 10.1215/S0012-7094-00-10112-3
- Dietmar Bisch and Vaughan Jones, Singly generated planar algebras of small dimension. II, Adv. Math. 175 (2003), no. 2, 297–318. MR 1972635, DOI 10.1016/S0001-8708(02)00060-9
- Ola Bratteli, Inductive limits of finite dimensional $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234. MR 312282, DOI 10.1090/S0002-9947-1972-0312282-2
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- David E. Evans and Yasuyuki Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1642584
- Malcolm Goldman, On subfactors of factors of type $\textrm {II}_{1}$, Michigan Math. J. 6 (1959), 167–172. MR 107827
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799, DOI 10.1007/978-1-4613-9641-3
- Masaki Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), no. 6, 953–994. MR 1145672, DOI 10.2977/prims/1195169007
- Masaki Izumi and Hideki Kosaki, On a subfactor analogue of the second cohomology, Rev. Math. Phys. 14 (2002), no. 7-8, 733–757. Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday. MR 1932664, DOI 10.1142/S0129055X02001375
- Vaughan F. R. Jones, Actions of finite groups on the hyperfinite type $\textrm {II}_{1}$ factor, Mem. Amer. Math. Soc. 28 (1980), no. 237, v+70. MR 587749, DOI 10.1090/memo/0237
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), no. 2, 311–334. MR 990215, DOI 10.2140/pjm.1989.137.311 J18 Jones, V. F. R. (in press). Planar algebras I. New Zealand Journal of Mathematics. arXiv.math.QA/9909027.
- Vaughan F. R. Jones, The planar algebra of a bipartite graph, Knots in Hellas ’98 (Delphi), Ser. Knots Everything, vol. 24, World Sci. Publ., River Edge, NJ, 2000, pp. 94–117. MR 1865703, DOI 10.1142/9789812792679_{0}008
- Vaughan F. R. Jones, The annular structure of subfactors, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, pp. 401–463. MR 1929335
- V. F. R. Jones, On a family of almost commuting endomorphisms, J. Funct. Anal. 122 (1994), no. 1, 84–90. MR 1274584, DOI 10.1006/jfan.1994.1062 J31 Jones, V. F. R. (2003) Quadratic tangles in planar algebras. In preparation: http://math.berkeley.edu/ vfr/.
- V. Jones and V. S. Sunder, Introduction to subfactors, London Mathematical Society Lecture Note Series, vol. 234, Cambridge University Press, Cambridge, 1997. MR 1473221, DOI 10.1017/CBO9780511566219
- Vaughan F. R. Jones and Feng Xu, Intersections of finite families of finite index subfactors, Internat. J. Math. 15 (2004), no. 7, 717–733. MR 2085101, DOI 10.1142/S0129167X04002521
- Zeph A. Landau, Fuss-Catalan algebras and chains of intermediate subfactors, Pacific J. Math. 197 (2001), no. 2, 325–367. MR 1815260, DOI 10.2140/pjm.2001.197.325 La2 Landau, Z. (2002). Exchange relation planar algebras. Journal of Functional Analysis, 195, 71–88. O3 Ocneanu, A. (1991). Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes 45, (Notes recorded by Kawahigashi, Y.).
- Shingo Okamoto, Invariants for subfactors arising from Coxeter graphs, Current topics in operator algebras (Nara, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 84–103. MR 1193932
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811, DOI 10.24033/asens.1504
- S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19–43. MR 1055708, DOI 10.1007/BF01231494
- Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427–445. MR 1334479, DOI 10.1007/BF01241137
- Takashi Sano and Yasuo Watatani, Angles between two subfactors, J. Operator Theory 32 (1994), no. 2, 209–241. MR 1338739
- Jean-Luc Sauvageot, Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory 9 (1983), no. 2, 237–252 (French). MR 703809
- H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280. MR 498284, DOI 10.1098/rspa.1971.0067
- Yasuo Watatani, Lattices of intermediate subfactors, J. Funct. Anal. 140 (1996), no. 2, 312–334. MR 1409040, DOI 10.1006/jfan.1996.0110
Bibliographic Information
- Pinhas Grossman
- Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
- Email: pinhas@math.berkeley.edu
- Vaughan F. R. Jones
- Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
- MR Author ID: 95565
- Email: vfr@math.berkeley.edu
- Received by editor(s): February 14, 2005
- Published electronically: May 10, 2006
- Additional Notes: The authors were supported in part by NSF Grant DMS04-01734; the second author was also supported by the Marsden fund UOA520 and the Swiss National Science Foundation
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 219-265
- MSC (2000): Primary 46L37
- DOI: https://doi.org/10.1090/S0894-0347-06-00531-5
- MathSciNet review: 2257402