Universal characteristic factors and Furstenberg averages
HTML articles powered by AMS MathViewer
- by Tamar Ziegler
- J. Amer. Math. Soc. 20 (2007), 53-97
- DOI: https://doi.org/10.1090/S0894-0347-06-00532-7
- Published electronically: March 17, 2006
- PDF | Request permission
Abstract:
Let $X=(X^0,\mathcal {B},\mu ,T)$ be an ergodic probability measure-preserving system. For a natural number $k$ we consider the averages \begin{equation*} \tag {*} \frac {1}{N}\sum _{n=1}^N \prod _{j=1}^k f_j(T^{a_jn}x) \end{equation*} where $f_j \in L^{\infty }(\mu )$, and $a_j$ are integers. A factor of $X$ is characteristic for averaging schemes of length $k$ (or $k$-characteristic) if for any nonzero distinct integers $a_1,\ldots ,a_k$, the limiting $L^2(\mu )$ behavior of the averages in (*) is unaltered if we first project the functions $f_j$ onto the factor. A factor of $X$ is a $k$-universal characteristic factor ($k$-u.c.f.) if it is a $k$-characteristic factor, and a factor of any $k$-characteristic factor. We show that there exists a unique $k$-u.c.f., and it has the structure of a $(k-1)$-step nilsystem, more specifically an inverse limit of $(k-1)$-step nilflows. Using this we show that the averages in (*) converge in $L^2(\mu )$. This provides an alternative proof to the one given by Host and Kra.References
- V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), no. 3, 337–349. MR 912373, DOI 10.1017/S0143385700004090
- Howard Becker and Alexander S. Kechris, The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996. MR 1425877, DOI 10.1017/CBO9780511735264
- Jean Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5–45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. MR 1019960, DOI 10.1007/BF02698838
- Jean-Pierre Conze and Emmanuel Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), no. 2, 143–175 (French, with English summary). MR 788966, DOI 10.24033/bsmf.2003
- Jean-Pierre Conze and Emmanuel Lesigne, Sur un théorème ergodique pour des mesures diagonales, Probabilités, Publ. Inst. Rech. Math. Rennes, vol. 1987, Univ. Rennes I, Rennes, 1988, pp. 1–31 (French). MR 989141
- Jean-Pierre Conze and Emmanuel Lesigne, Sur un théorème ergodique pour des mesures diagonales, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 12, 491–493 (French, with English summary). MR 939438
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- Hillel Furstenberg and Benjamin Weiss, A mean ergodic theorem for $(1/N)\sum ^N_{n=1}f(T^nx)g(T^{n^2}x)$, Convergence in ergodic theory and probability (Columbus, OH, 1993) Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, Berlin, 1996, pp. 193–227. MR 1412607
- V. V. Gorbatsevich, A. L. Onishchik, and E. B. Vinberg, Foundations of Lie theory and Lie transformation groups, Springer-Verlag, Berlin, 1997. Translated from the Russian by A. Kozlowski; Reprint of the 1993 translation [Lie groups and Lie algebras. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993; MR1306737 (95f:22001)]. MR 1631937
- W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588. MR 1844079, DOI 10.1007/s00039-001-0332-9 [GT04]GT04 Green, B.; Tao, T. The primes contain arbitrarily long arithmetic progressions. To appear Ann. of Math.
- Bernard Host and Bryna Kra, Convergence of Conze-Lesigne averages, Ergodic Theory Dynam. Systems 21 (2001), no. 2, 493–509. MR 1827115, DOI 10.1017/S0143385701001249
- Bernard Host and Bryna Kra, An odd Furstenberg-Szemerédi theorem and quasi-affine systems, J. Anal. Math. 86 (2002), 183–220. MR 1894481, DOI 10.1007/BF02786648 [HK02a]HK02a Host, B.; Kra, B. personal communication.
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Michel Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Norm. Sup. (3) 71 (1954), 101–190 (French). MR 0088496, DOI 10.24033/asens.1021
- A. Leibman, Polynomial sequences in groups, J. Algebra 201 (1998), no. 1, 189–206. MR 1608723, DOI 10.1006/jabr.1997.7269
- A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 201–213. MR 2122919, DOI 10.1017/S0143385704000215
- Emmanuel Lesigne, Résolution d’une équation fonctionnelle, Bull. Soc. Math. France 112 (1984), no. 2, 177–196 (French, with English summary). MR 788967, DOI 10.24033/bsmf.2004
- Emmanuel Lesigne, Théorèmes ergodiques ponctuels pour des mesures diagonales. Cas des systèmes distaux, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 4, 593–612 (French, with English summary). MR 928005
- Emmanuel Lesigne, Théorèmes ergodiques pour une translation sur un nilvariété, Ergodic Theory Dynam. Systems 9 (1989), no. 1, 115–126 (French, with English summary). MR 991492, DOI 10.1017/S0143385700004843
- E. Lesigne, Équations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales, Bull. Soc. Math. France 121 (1993), no. 3, 315–351 (French, with English and French summaries). MR 1242635, DOI 10.24033/bsmf.2211
- Nicolas Lusin, Leçons sur les ensembles analytiques et leurs applications, Chelsea Publishing Co., New York, 1972 (French). Avec une note de W. Sierpiński; Preface de Henri Lebesgue; Réimpression de l’edition de 1930. MR 0392465 [Me90]Me90 Meiri, D. Generalized correlation series and nilpotent systems. M.Sc. thesis 1990.
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR 833286, DOI 10.1017/CBO9780511608728
- William Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771. MR 260975, DOI 10.2307/2373350
- William Parry, Dynamical systems on nilmanifolds, Bull. London Math. Soc. 2 (1970), 37–40. MR 267558, DOI 10.1112/blms/2.1.37
- William Parry, Dynamical representations in nilmanifolds, Compositio Math. 26 (1973), 159–174. MR 320277
- Daniel J. Rudolph, Eigenfunctions of $T\times S$ and the Conze-Lesigne algebra, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993) London Math. Soc. Lecture Note Ser., vol. 205, Cambridge Univ. Press, Cambridge, 1995, pp. 369–432. MR 1325712, DOI 10.1017/CBO9780511574818.017
- Nimish A. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 229–271. MR 1699367 [Z02]Z02 Ziegler, T. Non-conventional ergodic averages. Ph.D. thesis. Availiable on-line at http://www.math.ias.edu/$\sim$tamar/
- T. Ziegler, A non-conventional ergodic theorem for a nilsystem, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1357–1370. MR 2158410, DOI 10.1017/S0143385703000518
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770
Bibliographic Information
- Tamar Ziegler
- Affiliation: Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, Ohio 43210
- Address at time of publication: School of Mathematics, The Institute of Advanced Study, Princeton, New Jersey 08540
- Email: tamar@math.ohio-state.edu, tamar@math.ias.edu
- Received by editor(s): October 18, 2004
- Published electronically: March 17, 2006
- © Copyright 2006 American Mathematical Society
- Journal: J. Amer. Math. Soc. 20 (2007), 53-97
- MSC (2000): Primary 37Axx
- DOI: https://doi.org/10.1090/S0894-0347-06-00532-7
- MathSciNet review: 2257397