Representations of affine Hecke algebras and based rings of affine Weyl groups
Author:
Nanhua Xi
Journal:
J. Amer. Math. Soc. 20 (2007), 211-217
MSC (2000):
Primary 20C08
DOI:
https://doi.org/10.1090/S0894-0347-06-00539-X
Published electronically:
June 19, 2006
MathSciNet review:
2257401
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we show that the Deligne-Langlands-Lusztig classification of simple representations of an affine Hecke algebra remains valid if the parameter is not a root of the corresponding Poincaré polynomial. This verifies a conjecture of Lusztig proposed in 1989.
- Susumu Ariki and Andrew Mathas, The number of simple modules of the Hecke algebras of type $G(r,1,n)$, Math. Z. 233 (2000), no. 3, 601–623. MR 1750939, DOI https://doi.org/10.1007/s002090050489
- Roman Bezrukavnikov and Viktor Ostrik, On tensor categories attached to cells in affine Weyl groups. II, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 101–119. MR 2074591, DOI https://doi.org/10.2969/aspm/04010101
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI https://doi.org/10.1007/BF01390139
- I. Grojnowski, Representations of affine Hecke algebras (and affine quantum ${\rm GL}_n$) at roots of unity, Internat. Math. Res. Notices 5 (1994), 215 ff., approx. 3 pp.}, issn=1073-7928, review=\MR{1270135}, doi=10.1155/S1073792894000243,.
- Akihiko Gyoja, Modular representation theory over a ring of higher dimension with applications to Hecke algebras, J. Algebra 174 (1995), no. 2, 553–572. MR 1334224, DOI https://doi.org/10.1006/jabr.1995.1139
- Akihiko Gyoja, Cells and modular representations of Hecke algebras, Osaka J. Math. 33 (1996), no. 2, 307–341. MR 1416051
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI https://doi.org/10.1007/BF01390031
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI https://doi.org/10.1007/BF01389157
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI https://doi.org/10.2969/aspm/00610255
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI https://doi.org/10.1016/0021-8693%2887%2990154-2
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI https://doi.org/10.1016/0021-8693%2887%2990154-2
- George Lusztig, Cells in affine Weyl groups. IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 2, 297–328. MR 1015001
- George Lusztig, Representations of affine Hecke algebras, Astérisque 171-172 (1989), 73–84. Orbites unipotentes et représentations, II. MR 1021500
- Marie-France Vignéras, Modular representations of $p$-adic groups and of affine Hecke algebras, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 667–677. MR 1957074
- Nan Hua Xi, Representations of affine Hecke algebras, Lecture Notes in Mathematics, vol. 1587, Springer-Verlag, Berlin, 1994. MR 1320509
- Nanhua Xi, The based ring of two-sided cells of affine Weyl groups of type $\widetilde A_{n-1}$, Mem. Amer. Math. Soc. 157 (2002), no. 749, xiv+95. MR 1895287, DOI https://doi.org/10.1090/memo/0749
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 20C08
Retrieve articles in all journals with MSC (2000): 20C08
Additional Information
Nanhua Xi
Affiliation:
Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Email:
nanhua@math.ac.cn
Keywords:
Affine Hecke algebra,
based ring,
representation
Received by editor(s):
February 10, 2005
Published electronically:
June 19, 2006
Additional Notes:
The author was partially supported by a fund of the 973 Program.
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.