Representations of affine Hecke algebras and based rings of affine Weyl groups
HTML articles powered by AMS MathViewer
- by Nanhua Xi;
- J. Amer. Math. Soc. 20 (2007), 211-217
- DOI: https://doi.org/10.1090/S0894-0347-06-00539-X
- Published electronically: June 19, 2006
- PDF | Request permission
Abstract:
In this paper we show that the Deligne-Langlands-Lusztig classification of simple representations of an affine Hecke algebra remains valid if the parameter is not a root of the corresponding Poincaré polynomial. This verifies a conjecture of Lusztig proposed in 1989.References
- Susumu Ariki and Andrew Mathas, The number of simple modules of the Hecke algebras of type $G(r,1,n)$, Math. Z. 233 (2000), no. 3, 601–623. MR 1750939, DOI 10.1007/s002090050489
- Roman Bezrukavnikov and Viktor Ostrik, On tensor categories attached to cells in affine Weyl groups. II, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 101–119. MR 2074591, DOI 10.2969/aspm/04010101
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI 10.1007/BF01390139
- I. Grojnowski, Representations of affine Hecke algebras (and affine quantum $\textrm {GL}_n$) at roots of unity, Internat. Math. Res. Notices 5 (1994), 215 ff., approx. 3 pp.}, issn=1073-7928, review= MR 1270135, doi=10.1155/S1073792894000243, DOI 10.1155/S1073792894000243
- Akihiko Gyoja, Modular representation theory over a ring of higher dimension with applications to Hecke algebras, J. Algebra 174 (1995), no. 2, 553–572. MR 1334224, DOI 10.1006/jabr.1995.1139
- Akihiko Gyoja, Cells and modular representations of Hecke algebras, Osaka J. Math. 33 (1996), no. 2, 307–341. MR 1416051
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- George Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 255–287. MR 803338, DOI 10.2969/aspm/00610255
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI 10.1016/0021-8693(87)90154-2
- George Lusztig, Cells in affine Weyl groups. II, J. Algebra 109 (1987), no. 2, 536–548. MR 902967, DOI 10.1016/0021-8693(87)90154-2
- George Lusztig, Cells in affine Weyl groups. IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 2, 297–328. MR 1015001
- George Lusztig, Representations of affine Hecke algebras, Astérisque 171-172 (1989), 73–84. Orbites unipotentes et représentations, II. MR 1021500
- Marie-France Vignéras, Modular representations of $p$-adic groups and of affine Hecke algebras, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 667–677. MR 1957074
- Nan Hua Xi, Representations of affine Hecke algebras, Lecture Notes in Mathematics, vol. 1587, Springer-Verlag, Berlin, 1994. MR 1320509, DOI 10.1007/BFb0074130
- Nanhua Xi, The based ring of two-sided cells of affine Weyl groups of type $\widetilde A_{n-1}$, Mem. Amer. Math. Soc. 157 (2002), no. 749, xiv+95. MR 1895287, DOI 10.1090/memo/0749
Bibliographic Information
- Nanhua Xi
- Affiliation: Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
- Email: nanhua@math.ac.cn
- Received by editor(s): February 10, 2005
- Published electronically: June 19, 2006
- Additional Notes: The author was partially supported by a fund of the 973 Program.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 211-217
- MSC (2000): Primary 20C08
- DOI: https://doi.org/10.1090/S0894-0347-06-00539-X
- MathSciNet review: 2257401