## A formula of two-partition Hodge integrals

HTML articles powered by AMS MathViewer

- by Chiu-Chu Melissa Liu, Kefeng Liu and Jian Zhou
- J. Amer. Math. Soc.
**20**(2007), 149-184 - DOI: https://doi.org/10.1090/S0894-0347-06-00541-8
- Published electronically: August 1, 2006
- PDF | Request permission

## Abstract:

Motivated by the Mariño-Vafa formula of Hodge integrals and physicists’ predictions on local Gromov-Witten invariants of toric Fano surfaces in a Calabi-Yau threefold, the third author conjectured a formula of certain Hodge integrals in terms of certain Chern-Simons invariants of the Hopf link. We prove this formula by virtual localization on moduli spaces of relative stable morphisms.## References

- Mina Aganagic, Albrecht Klemm, Marcos Mariño, and Cumrun Vafa,
*The topological vertex*, Comm. Math. Phys.**254**(2005), no. 2, 425–478. MR**2117633**, DOI 10.1007/s00220-004-1162-z - Mina Aganagic, Marcos Mariño, and Cumrun Vafa,
*All loop topological string amplitudes from Chern-Simons theory*, Comm. Math. Phys.**247**(2004), no. 2, 467–512. MR**2063269**, DOI 10.1007/s00220-004-1067-x - Jim Bryan and Rahul Pandharipande,
*Curves in Calabi-Yau threefolds and topological quantum field theory*, Duke Math. J.**126**(2005), no. 2, 369–396. MR**2115262**, DOI 10.1215/S0012-7094-04-12626-0 - Duiliu-Emanuel Diaconescu and Bogdan Florea,
*Localization and gluing of topological amplitudes*, Comm. Math. Phys.**257**(2005), no. 1, 119–149. MR**2163571**, DOI 10.1007/s00220-005-1323-8 - Robbert Dijkgraaf,
*Mirror symmetry and elliptic curves*, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 149–163. MR**1363055**, DOI 10.1007/978-1-4612-4264-2_{5} - Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein,
*Hurwitz numbers and intersections on moduli spaces of curves*, Invent. Math.**146**(2001), no. 2, 297–327. MR**1864018**, DOI 10.1007/s002220100164 - B. Fantechi and R. Pandharipande,
*Stable maps and branch divisors*, Compositio Math.**130**(2002), no. 3, 345–364. MR**1887119**, DOI 10.1023/A:1014347115536 - I. P. Goulden, D. M. Jackson, and A. Vainshtein,
*The number of ramified coverings of the sphere by the torus and surfaces of higher genera*, Ann. Comb.**4**(2000), no. 1, 27–46. MR**1763948**, DOI 10.1007/PL00001274 - T. Graber and R. Pandharipande,
*Localization of virtual classes*, Invent. Math.**135**(1999), no. 2, 487–518. MR**1666787**, DOI 10.1007/s002220050293 - Tom Graber and Ravi Vakil,
*Hodge integrals and Hurwitz numbers via virtual localization*, Compositio Math.**135**(2003), no. 1, 25–36. MR**1955162**, DOI 10.1023/A:1021791611677 - Tom Graber and Ravi Vakil,
*Relative virtual localization and vanishing of tautological classes on moduli spaces of curves*, Duke Math. J.**130**(2005), no. 1, 1–37. MR**2176546**, DOI 10.1215/S0012-7094-05-13011-3
Iqb A. Iqbal, - Eleny-Nicoleta Ionel and Thomas H. Parker,
*Relative Gromov-Witten invariants*, Ann. of Math. (2)**157**(2003), no. 1, 45–96. MR**1954264**, DOI 10.4007/annals.2003.157.45 - Eleny-Nicoleta Ionel and Thomas H. Parker,
*The symplectic sum formula for Gromov-Witten invariants*, Ann. of Math. (2)**159**(2004), no. 3, 935–1025. MR**2113018**, DOI 10.4007/annals.2004.159.935 - Sheldon Katz and Chiu-Chu Melissa Liu,
*Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc*, Adv. Theor. Math. Phys.**5**(2001), no. 1, 1–49. MR**1894336**, DOI 10.4310/ATMP.2001.v5.n1.a1 - Maxim Kontsevich,
*Intersection theory on the moduli space of curves and the matrix Airy function*, Comm. Math. Phys.**147**(1992), no. 1, 1–23. MR**1171758**, DOI 10.1007/BF02099526 - An-Min Li and Yongbin Ruan,
*Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds*, Invent. Math.**145**(2001), no. 1, 151–218. MR**1839289**, DOI 10.1007/s002220100146 - An-Min Li, Guosong Zhao, and Quan Zheng,
*The number of ramified covering of a Riemann surface by Riemann surface*, Comm. Math. Phys.**213**(2000), no. 3, 685–696. MR**1785434**, DOI 10.1007/s002200000254 - Jun Li,
*Stable morphisms to singular schemes and relative stable morphisms*, J. Differential Geom.**57**(2001), no. 3, 509–578. MR**1882667** - Jun Li,
*A degeneration formula of GW-invariants*, J. Differential Geom.**60**(2002), no. 2, 199–293. MR**1938113** - Jun Li,
*Lecture notes on relative GW-invariants*, Intersection theory and moduli, ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 41–96. MR**2172495**
LLLZ J. Li, C.-C. Liu, K. Liu, J. Zhou, - Chiu-Chu Melissa Liu, Kefeng Liu, and Jian Zhou,
*A proof of a conjecture of Mariño-Vafa on Hodge integrals*, J. Differential Geom.**65**(2003), no. 2, 289–340. MR**2058264** - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144** - Marcos Mariño and Cumrun Vafa,
*Framed knots at large $N$*, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 185–204. MR**1950947**, DOI 10.1090/conm/310/05404 - Hugh R. Morton and Sascha G. Lukac,
*The Homfly polynomial of the decorated Hopf link*, J. Knot Theory Ramifications**12**(2003), no. 3, 395–416. MR**1983094**, DOI 10.1142/S0218216503002536 - Andrei Okounkov,
*Toda equations for Hurwitz numbers*, Math. Res. Lett.**7**(2000), no. 4, 447–453. MR**1783622**, DOI 10.4310/MRL.2000.v7.n4.a10 - A. Okounkov and R. Pandharipande,
*Gromov-Witten theory, Hurwitz theory, and completed cycles*, Ann. of Math. (2)**163**(2006), no. 2, 517–560. MR**2199225**, DOI 10.4007/annals.2006.163.517 - A. Okounkov and R. Pandharipande,
*Hodge integrals and invariants of the unknot*, Geom. Topol.**8**(2004), 675–699. MR**2057777**, DOI 10.2140/gt.2004.8.675 - Edward Witten,
*Quantum field theory and the Jones polynomial*, Comm. Math. Phys.**121**(1989), no. 3, 351–399. MR**990772**, DOI 10.1007/BF01217730 - Edward Witten,
*Two-dimensional gravity and intersection theory on moduli space*, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR**1144529**
Zho1 J. Zhou,

*All genus topological amplitudes and $5$-brane webs as Feynman diagrams*, preprint, hep-th/0207114.

*A mathematical theory of the topological vertex*, preprint, math.AG/0408426.

*Hodge integrals, Hurwitz numbers, and symmetric groups*, preprint, math.AG/0308024, to appear in Comm. Anal. Geom. Zho2 J. Zhou,

*Mariño-Vafa formula and BPS numbers in local $\mathbb {P}^2$ and $\mathbb {P}^1 \times \mathbb {P}^1$ geometry*, preprint, submitted. Zho3 J. Zhou,

*A conjecture on Hodge integrals*, preprint, math.AG/0310282. Zho4 J. Zhou,

*Localizations on moduli spaces and free field realizations of Feynman rules*, preprint, math.AG/0310283.

## Bibliographic Information

**Chiu-Chu Melissa Liu**- Affiliation: Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China and Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Address at time of publication: Department of Mathematics, Columbia University, New York, New York, 10027
- MR Author ID: 691648
- Email: ccliu@math.columbia.edu
**Kefeng Liu**- Affiliation: Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China and Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
- MR Author ID: 327618
- Email: liu@cms.zju.edu.cn, liu@math.ucla.edu
**Jian Zhou**- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People’s Republic of China and Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
- Email: jzhou@math.tsinghua.edu.cn
- Received by editor(s): January 19, 2005
- Published electronically: August 1, 2006
- © Copyright 2006 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**20**(2007), 149-184 - MSC (2000): Primary 14N35, 53D45; Secondary 57M27
- DOI: https://doi.org/10.1090/S0894-0347-06-00541-8
- MathSciNet review: 2257399