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0. Introduction

The connection between ergodic theory and the theory of von Neumann algebras
goes back to the very beginning of the theory of “rings of operators”. Maximal
inequalities in ergodic theory provide an important tool in classical analysis. In this
paper we prove the noncommutative analogue of the classical Dunford-Schwartz
maximal ergodic theorem, thereby connecting these different aspects of ergodic
theory.

At the early stage of noncommutative ergodic theory, only mean ergodic theo-
rems have been obtained (cf., e.g., [Ja1, Ja2] for more information). The study of
individual ergodic theorems really took off with Lance’s pioneering work [L]. Lance
proved that the ergodic averages associated with an automorphism of a σ-finite
von Neumann algebra which leaves invariant a normal faithful state converge al-
most uniformly. Lance’s ergodic theorem was extensively extended and improved
by (among others) Conze, Dang-Ngoc [CoN], Kümmerer [Kü] (see [Ja1, Ja2] for
more references). On the other hand, Yeadon [Ye] obtained a maximal ergodic
theorem in the preduals of semifinite von Neumann algebras. Yeadon’s theorem
provides a maximal ergodic inequality which might be understood as a weak type
(1, 1) inequality. This inequality is the ergodic analogue of Cuculescu’s [Cu] result
obtained previously for noncommutative martingales. We should point out that in
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contrast with the classical theory, the noncommutative nature of these weak type
(1, 1) inequalities seems a priori unsuitable for classical interpolation arguments.

Since then the problem of finding a noncommutative analogue of the Dunford-
Schwartz maximal ergodic inequalities was left open. The main reason is that all
the usual techniques in classical ergodic theory involving maximal functions seem no
longer available in the noncommutative case. In fact, this applies for the definition
of the maximal function itself. As an example, we consider

a1 =
(

2 0
0 0

)
, a2 =

(
1 1
1 1

)
, a3 =

(
0 0
0 1

)
.

Then there is no 2 × 2 matrix a such that

〈ξ, aξ〉 = max
{
〈ξ, a1ξ〉, 〈ξ, a2ξ〉 〈ξ, a3ξ〉

}
holds for all ξ ∈ �22.

However, this obstacle has been overcome recently in the theory of noncommu-
tative martingale inequalities. In fact, most of the classical martingale inequalities
have been successfully transferred to the noncommutative setting. These include
Burkholder inequalities on conditioned square functions [JX2], Burkholder-Gundy
inequalities on square functions [PX1], the Doob maximal inequality [Ju], Rosenthal
inequalities on independent random variables [JX4] and boundedness of martingale
transforms [Ra]. See the survey [X] for the state of the art regarding this theory.

Let us point out that this new development of noncommutative martingale in-
equalities is inspired and motivated by interactions with operator space theory.
For instance, the formulation of the noncommutative Doob maximal inequality was
directly derived from Pisier’s theory of vector-valued noncommutative Lp-spaces
[P].

Following the well-known analogy between martingale theory and ergodic theory,
we show that the techniques developed for noncommutative martingales can be used
to prove the noncommutative maximal ergodic inequalities as well.

To state our main results we need some notation. Let M be a semifinite von
Neumann algebra equipped with a normal semifinite faithful trace τ . Let Lp(M)
be the associated noncommutative Lp-space. Let T : M → M be a linear map
which might satisfy some of the following properties:

(0.I) T is a contraction on M: ‖Tx‖∞ ≤ ‖x‖∞ for all x ∈ M;
(0.II) T is positive: Tx ≥ 0 if x ≥ 0;

(0.III) τ ◦ T ≤ τ : τ (T (x)) ≤ τ (x) for all x ∈ L1(M) ∩M+;
(0.IV) T is symmetric relative to τ : τ (T (y)∗x) = τ (y∗T (x)) for all x, y in the

intersection L2(M) ∩M.

The properties (0.I), (0.II) and (0.III) will be essential for what follows. If T
satisfies these properties, then T naturally extends to a contraction on Lp(M) for
all 1 ≤ p < ∞ (see Lemma 1.1 below). The extension will still be denoted by T . If
T additionally has (0.IV), then its extension is selfadjoint on L2(M). We consider
the ergodic averages of T :

Mn(T ) =
1

n + 1

n∑
k=0

T k , n ∈ N.
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The following is one of our main results:

Theorem 0.1. Let 1 < p < ∞ and T be a linear map satisfying (0.I)–(0.III) above.
i) For any x ∈ Lp(M) with x ≥ 0 there is an a ∈ Lp(M) such that

∀ n ∈ N, Mn(T )(x) ≤ a and ‖a‖p ≤ Cp‖x‖p ,

where Cp is a positive constant depending only on p. Moreover, Cp ≤
Cp2(p − 1)−2 and (p − 1)−2 is the optimal order of Cp as p → 1.

ii) If additionally T satisfies (0.IV), then for any x ∈ Lp(M) with x ≥ 0 there
is an a ∈ Lp(M) such that

∀ n ∈ N, Tn(x) ≤ a and ‖a‖p ≤ C ′
p‖x‖p .

Part i) above is the noncommutative analogue of the classical Dunford-Schwartz
theorem in commutative Lp-spaces (cf. [DS]). Note that the optimal order of
the constant Cp above is different from that in the commutative case, which is
(p − 1)−1 as p → 1. Part ii) is the noncommutative analogue of Stein’s maximal
ergodic inequality (see [St2]). Note that in the case where τ is normalized (i.e.
τ (1) = 1), the following weak form of part i) was obtained in [GoG]: Given ε > 0
such that p − ε > 1 and x ∈ Lp(M) (x ≥ 0) there is an a ∈ Lp−ε(M) such that

∀ n ∈ N, Mn(T )(x) ≤ a and ‖a‖p−ε ≤ Cp,ε‖x‖p .

As in the commutative case, Theorem 0.1 also holds for all elements of Lp(M)
(not only the positive ones). This requires an appropriate definition of the space
Lp(M; �∞) in the noncommutative setting (see section 2 for more details). On the
other hand, by discretization, we have a similar theorem for semigroups.

The proof of Theorem 0.1, i) relies on Yeadon’s weak type (1,1) maximal ergodic
inequality already quoted (see also Lemma 1.2 below). As in the commutative
case, the main idea is to interpolate this weak type (1,1) inequality with the trivial
case p = ∞. Additional complications are due to the fact that the weak type
(1,1) estimate does not provide a majorant −a ≤ Mn(T )(x) ≤ a such that a is in
weak L1. In our proof of the noncommutative version of the classical Marcinkiewicz
theorem (see Theorem 3.1 below) we first establish an intermediate inequality using
noncommutative Lorentz spaces. Then we use the real interpolation method. We
should emphasize that contrary to the classical situation, this interpolation theorem
is not valid for the spaces Lp(M; �∞) themselves but only for their positive cones.

For the proof of part ii) of Theorem 0.1, we adapt Stein’s arguments in [St2] to
the noncommutative setting.

As usual, the maximal ergodic inequalities in Theorem 0.1 imply the correspond-
ing pointwise ergodic theorems. The arguments are standard in the tracial case.
However, the nontracial case requires additional work (see section 7). Our ap-
proach to the individual ergodic theorems seems new. In order to ensure pointwise
convergence we use the space Lp(M; c0) which is the closure of finite sequences
in Lp(M; �∞) (p < ∞). The main step towards individual ergodic theorems is
contained in the following result:

Theorem 0.2. Let 1 < p < ∞ and T satisfy (0.I)–(0.III). Let F be the projection
onto the fixed point subspace of T considered as a map on Lp(M). Then

(
Mn(x)−

F (x)
)
n

∈ Lp(M; c0) for any x ∈ Lp(M). If additionally, T has (0.IV), then(
Tn(x) − F (x)

)
n
∈ Lp(M; c0).
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Let us mention here one application to free group von Neumann algebras for
illustration. Let Fn be a free group on n generators, and let V N(Fn) be its von
Neumann algebra equipped with the canonical normalized trace τ . Let λ be the left
regular representation of Fn on �2(Fn). Recall that V N(Fn) is the von Neumann
algebra on �2(Fn) generated by {λ(g) : g ∈ Fn}. Let | · | denote the length function
on Fn (relative to a fixed family of n generators). Haagerup [H4] proved that the
map Tt defined by Tt(λ(g)) = e−t|g|λ(g) extends to a completely positive map on
V N(Fn). It is easy to check that Tt possesses all properties (0.I)–(0.IV). Conse-
quently, Tt extends to a positive contraction on Lp(V N(Fn)) for all 1 ≤ p < ∞ (still
denoted by Tt). It is then clear that (Tt) is a symmetric semigroup on Lp(V N(Fn))
and strongly continuous for p < ∞. Thus applying Theorem 0.1, ii) to this semi-
group, we obtain the following result formulated in terms of (bilateral) almost
uniform convergence:

Theorem 0.3. Let 1 < p ≤ ∞. Then for any x ∈ Lp(V N(Fn)) with x ≥ 0 there
is an a ∈ Lp(V N(Fn)) such that

∀ t > 0, Tt(x) ≤ a and ‖a‖p ≤ C ′
p‖x‖p .

Consequently, limt→0 Tt(x) = x bilaterally almost uniformly (and almost uniformly
if p > 2) for any x ∈ Lp(V N(Fn)).

The notion of (bilateral) almost uniform convergence is a noncommutative ana-
logue of the notion of almost everywhere convergence. We refer to section 6 for the
relevant definitions. Note that when n = 1, V N(F1) is just L∞(T), where T is the
unit circle and Tt becomes the usual Poisson semigroup. Thus the theorem above
is the free analogue of the classical radial maximal inequality and of the radial
pointwise convergence theorem about the Poisson integral in the unit disc.

Let us end this introduction with a brief description of the organization of the
paper. The first six sections concern solely the semifinite case. After a preliminary
section, we give some elementary properties of the vector-valued noncommutative
Lp-spaces Lp(M; �∞) in section 2. These vector-valued Lp-spaces were first in-
troduced by Pisier [P] for injective von Neumann algebras and then extended to
general von Neumann algebras by the first named author in [Ju]. They provide the
main tool of this paper.

Section 3 is devoted to the noncommutative analogue of the classical Marcinkie-
wicz interpolation theorem. This is the most technical result of the paper. It seems
reasonable to expect further applications in the noncommutative setting.

Section 4 contains our first maximal ergodic theorems. The main result there is
Theorem 0.1, i). This is an immediate consequence of the previous interpolation
theorem.

Section 5 deals with the maximal inequalities when assuming the symmetry
condition (0.IV). In particular, we prove Theorem 0.1, ii). Our proof requires Stein’s
interpolation technique using fractional averages (which makes it quite involved).

In Section 6 we study the individual ergodic theorems. In particular, we prove
Theorem 0.2 above.

The objective of section 7 is to extend all previous results to the general (non-
tracial) von Neumann algebras by a reduction argument. This argument is based
on an important (unfortunately) unpublished result due to Haagerup [H3]. Let
us mention that the arguments for pointwise convergence in Haagerup Lp-spaces
are usually more delicate than their semifinite counterparts. However, our new
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approach presented in section 6 permits us to give a unified treatment of both
cases.

Section 8 presents some natural examples to which our theory applies. These
include the free products of completely positive semigroups, the Poisson semigroup
of a free group (which yields Theorem 0.3 above) and the q-Ornstein-Uhlenbeck
semigroups.

The main results of this paper were announced in [JX1].

1. Preliminaries

The noncommutative Lp-spaces used in this paper are most of the time those
based on semifinite von Neumann algebras, except those in the last two sections.
Thus in this preliminary section we concentrate only on the semifinite noncom-
mutative Lp-spaces. There are numerous references for these spaces. Our main
reference is [FK]. The recent survey [PX2] presents a rather complete picture on
noncommutative integration and contains a lot of references.

Let M be a semifinite von Neumann algebra equipped with a normal semifinite
faithful trace τ . Let S+ denote the set of all x ∈ M+ such that τ (supp x) < ∞,
where supp x denotes the support of x. Let S be the linear span of S+. Then S is
a w*-dense ∗-subalgebra of M. Given 0 < p < ∞, we define

‖x‖p =
[
τ (|x|p)

]1/p
, x ∈ S,

where |x| = (x∗x)1/2 is the modulus of x. Then (S, ‖ · ‖p) is a normed (or quasi-
normed for p < 1) space, whose completion is the noncommutative Lp-space asso-
ciated with (M, τ ), denoted by Lp(M, τ ) or simply by Lp(M). As usual, we set
L∞(M, τ ) = M equipped with the operator norm.

The elements in Lp(M) can be viewed as closed densely defined operators on
H (H being the Hilbert space on which M acts). We recall this briefly. Let
L0(M) = L0(M, τ ) denote the space of all closed densely defined operators on
H measurable with respect to (M, τ ). For a measurable operator x we define its
generalized singular numbers by

µt(x) = inf
{
λ > 0 : τ

(
1l(λ,∞)(|x|)

)
≤ t

}
, t > 0.

Let
V (ε, δ) = {x ∈ L0(M) : µε(x) ≤ δ}.

Then {V (ε, δ) : ε > 0, δ > 0} is a system of neighbourhoods at 0 for which L0(M)
becomes a metrizable topological ∗-algebra. The convergence with respect to this
topology is called the convergence in measure. Moreover, M is dense in L0(M).

The trace τ extends to a positive tracial functional on the positive part L+
0 (M)

of L0(M), still denoted by τ , satisfying

τ (x) =
∫ ∞

0

µt(x)dt, x ∈ L+
0 (M).

Then for 0 < p < ∞,

Lp(M) =
{
x ∈ L0(M) : τ (|x|p) < ∞

}
and for x ∈ Lp(M),

‖x‖p
p = τ (|x|p) =

∫ ∞

0

(µt(x))p dt .



390 MARIUS JUNGE AND QUANHUA XU

More generally, we can define the noncommutative Lorentz space Lp,q(M):

Lp,q(M, τ ) =
{
x ∈ L0(M) : ‖x‖p,q < ∞

}
,

where

‖x‖p,q =
( ∫ ∞

0

(
t

1
p µt(x)

)q dt

t

)1/q

for q < ∞ and with the usual modification for q = ∞. The positive cone of Lp,q(M)
is denoted by L+

p,q(M)
As the commutative Lp-spaces, the noncommutative Lp-spaces behave well with

respect to the complex interpolation method and the real interpolation method (in
the semifinite case). Let 0 < θ < 1, 1 ≤ p0 < p1 ≤ ∞ and 1 ≤ q0, q1, q ≤ ∞. Then

(1.1) Lp(M) =
(
Lp0(M), Lp1(M)

)
θ

(with equal norms)

and

(1.2) Lp,q(M) =
(
Lp0,q0(M), Lp1,q1(M)

)
θ,q

(with equivalent norms),

where
1
p

=
1 − θ

p0
+

θ

p1
, and where (· , ·)θ, (· , ·)θ,q denote respectively the complex

and real interpolation methods. Our reference for interpolation theory is [BeL].
Let T be a linear map on Lp(M). T is called positive if T preserves the positive

cone of Lp(M), i.e., x ≥ 0 =⇒ Tx ≥ 0. The following lemma is elementary
and certainly well known. See [Ye], where the extensions of T to all Lp(M) were
obtained but not their contractivity. The contractive extensions are, of course,
important in ergodic theory. We include a proof for completeness.

Lemma 1.1. Let T satisfy (0.I)–(0.III). Then T extends in a natural way to a
positive contraction on Lp(M) for all 1 ≤ p < ∞. Moreover, T is normal on M.
If T additionally has (0.IV), the extension of T on L2(M) is selfadjoint.

Proof. It is clear that T extends to L+
1 (M) and ‖Tx‖1 ≤ ‖x‖1 for all x ∈ L+

1 (M).
Then by a standard argument, T extends to a bounded map on L1(M), still denoted
by T , which is of norm ≤ 2 and positive too. By duality, S = T ∗ : M → M is a
bounded positive map. Consequently, ‖S‖ = ‖S(1)‖∞ (see [Pau]). However, one
easily checks that ‖S(1)‖∞ ≤ 1. Thus S is contractive, and so is T on L1(M). Then
by complex interpolation, T extends to a contraction on Lp(M) for all 1 < p < ∞.

Note that the positive map S on M introduced above satisfies the same assump-
tions as T . Thus applying the result just proved to S instead of T , we see that S
can be extended to a contraction on L1(M). Then a simple calculation shows that
the adjoint of this extension of S on L1(M) is equal to T . Hence T is normal on
M. The last part is clear. �

In the sequel, unless explicitly specified otherwise, T will always denote a map
on M with (0.I)–(0.III). The same symbol T will also stand for the extensions of
T on Lp(M) given by Lemma 1.1. Let T be such a map. We form its ergodic
averages:

Mn(T ) =
1

n + 1

n∑
k=0

T k .

Mn(T ) will be denoted by Mn whenever no confusion can occur.
By general ergodic theory on Banach spaces (cf. [DS]), one sees that T is mean

ergodic on Lp(M) for any 1 < p < ∞; i.e., Mn(x) converges to x̂ in Lp(M) for all
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x ∈ M. On the other hand, in case the trace τ is finite, by a well-known mean
ergodic theorem (cf., e.g., [Ja1, Theorem 2.2.1] and the references therein), Mn(x)
converges to x̂ with respect to the strong operator topology for every x ∈ M. This
implies (and in fact is equivalent to) that Mn(x) converges to x̂ for any x ∈ L1(M).

T induces a canonical splitting on Lp(M) for 1 < p < ∞:

Lp(M) = Fp(T ) ⊕Fp(T )⊥,

where Fp(T ) = {x ∈ Lp(M) : T (x) = x} and Fp(T )⊥ is the closure of the image
(I − T )(Lp(M)). The dual space of Fp(T ) coincides with Fp′(T ), where p′ is the
index conjugate to p. If in addition τ is finite, the previous splitting is also true for
p = 1 and p = ∞. Note then however that F∞(T )⊥ is the w*-closure of the image
(I − T )(L∞(M)).

Let Fp be the contractive positive projection from Lp(M) onto Fp(T ). Then F2

is the orthogonal projection from L2(M) onto F2(T ) and F ∗
p = Fp′ for 1 < p <

∞. (This is also true for p = 1 if τ is finite.) Note that Fp and Fq coincide on
Fp(T )∩Fq(T ) for two different p, q. This allows us to denote the Fp’s by the same
symbol F in the sequel. All previous facts are elementary and well known (cf. e.g.
[Ye]).

Let us transfer the discussion above to the setting of semigroups. We will say that
a semigroup (Tt)t≥0 of linear maps on M satisfies one of the conditions (0.I)–(0.IV)
if so does Tt for every t ≥ 0. All semigroups considered in this paper will be assumed
to satisfy (0.I)–(0.III). They will be further required to be w*-continuous on M and
such that T0 is the identity. As before, such semigroups are automatically extended
to positive contractive semigroups on Lp(M) for every 1 ≤ p ≤ ∞. Note that the
w*-continuity of (Tt) on M implies that (Tt) is strongly (i.e. norm) continuous on
Lp(M) for 1 ≤ p < ∞. Put again

Mt =
1
t

∫ t

0

T s ds, t > 0.

Note that for notational simplicity we will use the same letter M to denote the
ergodic averages for a contraction as well as for a semigroup. The precise meaning
should be clear in the concrete context. Again, the mean ergodic theorem asserts
that Mt(x) converges to F (x) in Lp(M) for all x ∈ Lp(M) (1 < p < ∞) , where F
stands for the projection from Lp(M) onto the fixed point space of (Tt), i.e., the
space {x ∈ Lp(M) : Tt(x) = x, ∀ t > 0}.

The following result due to Yeadon [Ye] will play an important role in this paper.
P(M) denotes the lattice of projections in M. Given e ∈ P(M), set e⊥ = 1 − e.

Lemma 1.2. Let T satisfy (0.I)–(0.III). Let x ∈ L+
1 (M). Then for any λ > 0

there is e ∈ P(M) such that

sup
n≥0

‖e Mn(T )(x) e‖∞ ≤ λ and τ (e⊥) ≤ ‖x‖1

λ
.

The reader can easily recognize that this is a noncommutative analogue of the
classical weak type (1,1) maximal ergodic inequality. Yeadon’s theorem has a mar-
tingale predecessor obtained by Cuculescu [Cu].

2. The spaces Lp(M; �∞)

A fundamental objective of this paper is to study the noncommutative spaces
Lp(M; �∞). Given 1 ≤ p ≤ ∞, Lp(M; �∞) is defined as the space of all sequences
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x = (xn)n≥0 in Lp(M) which admit a factorization of the following form: there are
a, b ∈ L2p(M) and y = (yn) ⊂ L∞(M) such that

xn = aynb, ∀ n ≥ 0.

We then define

‖x‖Lp(M;�∞) = inf
{
‖a‖2p sup

n≥0
‖yn‖∞ ‖b‖2p

}
,

where the infimum runs over all factorizations as above. One can (rather easily)
check that

(
Lp(M; �∞), ‖ · ‖Lp(M;�∞)

)
is a Banach space. These spaces are intro-

duced in [P] and [Ju]. (In [P], M is required to be hyperfinite.) To gain a very first
understanding on Lp(M; �∞), let us consider a positive sequence x = (xn). Then
one can show that x ∈ Lp(M; �∞) iff there are an a ∈ L+

p (M) and a yn ∈ L+
∞(M)

such that
xn = a

1
2 yn a

1
2 , ∀ n ≥ 0.

We can clearly assume that the yn are positive contractions. Thus if x has a
factorization as above, then xn ≤ a for all n. Conversely, if xn ≤ a for some a ∈
L+

p (M), then x
1/2
n = una1/2 for a contraction un ∈ M, and so xn = a1/2u∗

nuna1/2.
Thus x ∈ Lp(M; �∞). In summary, a positive sequence x belongs to Lp(M; �∞) iff
there is an a ∈ L+

p (M) such that xn ≤ a for all n, and moreover,

‖x‖Lp(M;�∞) = inf
{
‖a‖p : a ∈ L+

p (M) s.t. xn ≤ a, ∀ n ≥ 0
}
.

Convention. The norm of x in Lp(M; �∞) will often be denoted by
∥∥ sup+

n xn

∥∥
p

.

We should warn the reader that
∥∥ sup+

n xn

∥∥
p

is just a notation for supn xn and
does not make any sense in the noncommutative setting. We find, however, that∥∥ sup+

n xn

∥∥
p

is more intuitive than ‖x‖Lp(M;�∞).
It is proved in [Ju] that Lp(M; �∞) is a dual space for every p > 1. Its predual

is Lp′(M; �1) (p′ being the index conjugate to p). Let us define this latter space.
Given 1 ≤ p ≤ ∞, a sequence x = (xn) belongs to Lp(M; �1) if there are ukn, vkn ∈
L2p(M) such that

xn =
∑
k≥0

u∗
kn vkn

for all n and ∑
k,n≥0

u∗
kn ukn ∈ Lp(M),

∑
k,n≥0

v∗kn vkn ∈ Lp(M).

Here all series are required to be convergent in Lp(M) (relative to the w*-topology
in the case of p = ∞). Lp(M; �1) is a Banach space when equipped with the norm

‖x‖Lp(M;�1) = inf
{∥∥ ∑

k,n≥0

u∗
kn ukn

∥∥ 1
2

p

∥∥ ∑
k,n≥0

v∗kn vkn

∥∥ 1
2

p

}
,

where the infimum is taken over all (ukn) and (vkn) as above. It is clear that finite
sequences are dense in Lp(M; �1) if p < ∞. The duality between Lp(M; �∞) and
Lp′(M; �1) is given by

〈x, y〉 =
∑
n≥0

τ (xnyn).
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As previously for Lp(M; �∞), it is easy to describe the positive sequences in
Lp(M; �1). In fact, a positive sequence x = (xn) belongs to Lp(M; �1) iff

∑
n xn ∈

Lp(M). If this is the case,

‖x‖Lp(M;�1) =
∥∥ ∑

n≥0

xn

∥∥
p

.

Compare this equality (whose member on the right has the usual sense) with our
previous convention for the norm in Lp(M; �∞). This partly justifies the intuitive
notation

∥∥ sup+
n xn

∥∥
p
.

We collect some elementary properties of these spaces in the following proposi-
tion. We denote by Lp(M; �n+1

∞ ) the subspace of Lp(M; �∞) consisting of all finite
sequences (x0, x1, · · · , xn, 0, · · · ). In accordance with our preceding convention,
the norm of x in Lp(M; �n+1

∞ ) will be denoted by ‖ sup+
0≤k≤n xk‖p. Similarly, we

introduce the subspace Lp(M; �n+1
1 ) of Lp(M; �1).

Proposition 2.1. Let 1 ≤ p ≤ ∞.
i) Each element in the unit ball of Lp(M; �∞) (resp. Lp(M; �1)) is a sum of

sixteen (resp. eight) positive elements in the same ball.
ii) A sequence x = (xn) in Lp(M) belongs to Lp(M; �∞) iff

sup
n≥0

∥∥ sup+

0≤k≤n
xk

∥∥
p

< ∞.

If this is the case, then∥∥ sup
n

+xn

∥∥
p

= sup
n≥0

∥∥ sup+

0≤k≤n
xk

∥∥
p
.

iii) Let x = (xn) be a positive sequence in Lp(M; �∞). Then∥∥ sup
n

+xn

∥∥
p

= sup
{ ∑

n

τ (xnyn) : yn ∈ L+
p′(M) and

∥∥ ∑
n

yn

∥∥
p′ ≤ 1

}
.

iv) We have the following Cauchy-Schwarz type inequality: for any sequences
(xn) and (yn) in L2p(M),∥∥ sup

n

+x∗
n yn

∥∥
p
≤

∥∥ sup
n

+x∗
nxn

∥∥ 1
2

p

∥∥ sup
n

+y∗
nyn

∥∥ 1
2

p
.

Proof. i) First note that both Lp(M; �∞) and Lp(M; �1) are closed with respect
to involution. Thus we need only to consider selfadjoint elements. Let x be a
selfadjoint element (i.e., xn = x∗

n for all n) in the unit ball of Lp(M; �∞). Write a
factorization of x:

xn = a∗ynb with ‖a‖2p ≤ 1, ‖b‖2p ≤ 1 and sup
n

‖yn‖∞ ≤ 1.

Then by a standard polorization argument,

xn =
1
4

3∑
k=0

i−k (a + ikb)∗ yn (a + ikb) =
1
4

3∑
k=0

(a + ikb)∗ zn (a + ikb)

=
3∑

k=0

(a + ikb

2
)∗

z+
n

(a + ikb

2
)
−

3∑
k=0

(a + ikb

2
)∗

z−n
(a + ikb

2
)
,

where

zn =
i−kyn + (i−kyn)∗

2
.
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Hence the assertion concerning Lp(M; �∞) follows. The one for Lp(M; �1) is proved
similarly.

ii) It is trivial that

sup
n≥0

∥∥ sup+

0≤k≤n
xk

∥∥
p
≤

∥∥ sup
n

+xn

∥∥
p
.

To prove the converse, we introduce the subspace Lp(M; �01) of Lp(M; �1), which
consists of all finite sequences x admitting a factorization as in the definition
above of Lp(M; �1) but with finite families (ukn) and (vkn) only. Note that for
p < ∞, Lp(M; �01) is dense in Lp(M; �1). Now let x be a sequence such that
supn≥0

∥∥ sup+
0≤k≤n xk

∥∥
p

= 1. Define � : Lp′(M; �01) → C by �(y) =
∑

n τ (xnyn).
Then � is a continuous linear functional of norm ≤ 1. Thus if p > 1 (i.e., p′ < ∞),
by the duality result in [Ju] already quoted previously, � can be identified with an
element of Lp(M; �∞). This element must be x, and so we are done in this case.
It remains to consider the case p = 1. Using a standard Hahn-Banach argument as
presented in [Ju], we deduce two states ϕ and ψ on M such that

|τ (xnu∗v)| ≤
(
ϕ(u∗u)

) 1
2

(
ψ(v∗v)

) 1
2 , n ≥ 0, ∀ u, v ∈ M.

Since xn ∈ L1(M) � M∗ is a normal functional, we can replace in the inequality
above ϕ and ψ by their normal parts respectively, and so we can assume ϕ and ψ
are already normal. (In fact, in the present case, one can check that the singular
parts of ϕ and ψ are zero.) Identifying ϕ and ψ with two positive operators a and
b in the unit ball of L1(M), respectively, we rewrite the inequality above as

|τ (xnu∗v)| ≤ ‖ua
1
2 ‖2 ‖vb

1
2 ‖2 , n ≥ 0, ∀ u, v ∈ M.

Then as in [Ju], we find contractions yn ∈ M such that xn = b1/2 yn a1/2. Therefore,
x ∈ L1(M; �∞) and ‖ sup+

n xn‖1 ≤ 1.
Note that if additionally x is positive, in the Hahn-Banach argument above,

we can use only the positive cone L+
p′(M; �01) to get a factorization of x as xn =

a1/2 yn a1/2 with a ∈ L+
p (M) and yn positive contractions. See [Ju] for more details.

iii) For p > 1 this is already proved in [Ju]. For p = 1 this is a consequence of
ii) and the previous remark.

iv) We use duality. Let (ukn) and (vkn) be two finite families in L2p′(M). Then
by the Cauchy-Schwarz inequality∣∣ ∑

k,n

τ (x∗
n yn u∗

kn vkn)
∣∣ ≤ (

τ
∑
k,n

xn v∗kn vkn x∗
n

) 1
2

(
τ

∑
k,n

yn u∗
kn ukn y∗

n

) 1
2

≤
∥∥ sup

n

+x∗
nxn

∥∥ 1
2
p

∥∥ sup
n

+y∗
nyn

∥∥ 1
2
p

∥∥ ∑
k,n

v∗knvkn

∥∥ 1
2
p′

∥∥ ∑
k,n

u∗
knukn

∥∥ 1
2
p′ ,

whence the desired inequality. �

Remark 2.2. i) From the proof of part ii) above, one sees that the infimum defining
the norm ‖ supn xn‖p is attained for any x ∈ Lp(M; �∞) (1 ≤ p ≤ ∞). The same
proof shows that L1(M; �∞) is identified as an isometric subspace of the dual of
L∞(M; �01).

ii) We have a statement similar to Proposition 2.1, ii) for Lp(M; �1). On the
other hand, let Lp(M; c0) be the closure of finite sequences in Lp(M; �∞) for 1 ≤
p < ∞. Then one can show that the dual space of Lp(M; c0) is equal to Lp′(M; �1)
isometrically.
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iii) Neither Lp(M; �∞) nor Lp(M; �1) is stable under the operation (xn)n �→
(|xn|)n. Thus ‖ sup+

n xn‖p �= ‖ sup+
n |xn| ‖p in general.

Remark 2.3. If N ⊂ M is a von Neumann subalgebra such that the trace τ
restricted to N is semifinite on N , then we have a natural isometric inclusion
Lp(N ) ⊂ Lp(M). This extends to isometric inclusions:

Lp(N ; �∞) ⊂ Lp(M; �∞) and Lp(N ; �1) ⊂ Lp(M; �1) .

Indeed, by the definition of Lp(M; , �∞) and Lp(M; �1), the inclusions above are
contractive. On the other hand, the duality result from the preceding proposition
and remarks implies immediately that they are both isometric.

Remark 2.4. The definitions of Lp(M; �∞) and Lp(M; �1) can be extended to an
arbitrary index set. Let I be an index set. Then Lp(M; �∞(I)) and Lp(M; �1(I))
are defined similarly as before. For instance, Lp(M; �∞(I)) consists of all families
(xi)i∈I in Lp(M) which can be factorized as xi = ayib with a, b ∈ L2p(M) and a
bounded family (yi)i∈I ⊂ L∞(M). The norm of (xi)i∈I in Lp(M; �∞) is defined as
the infimum

inf ‖a‖2p sup
i

‖yi‖∞ ‖b‖2p

running over all factorizations as above. As before, this norm is also denoted by∥∥ sup
i

+xi

∥∥
p

.

Again the dual space of Lp(M; �1(I)) for p < ∞ is Lp′(M; �∞(I)). Proposition 2.1
remains true in this general setting.

We end this section with a simple result on complex interpolation of these vector-
valued noncommutative Lp-spaces.

Proposition 2.5. Let 1 ≤ p0 < p1 ≤ ∞ and 0 < θ < 1. Then we have isometrically

Lp(M; �1) =
(
Lp0(M; �1), Lp1(M; �1)

)
θ

and
Lp(M; �∞) =

(
Lp0(M; �∞), Lp1(M; �∞)

)
θ

,

where 1
p = 1−θ

p0
+ θ

p1
.

Proof. We use the column and row spaces Lp(M; �c
2(N

2)) and Lp(M; �r
2(N

2)) (cf.
[PX1] for the definition). It is known that {Lp(M; �c

2(N2))}1≤p≤∞ form an inter-
polation scale with respect to complex interpolation. The same is true for the row
spaces. Note that by the definition of Lp(M; �1), the bilinear map

B : Lp(M; �r
2(N2)) × Lp(M; �c

2(N
2)) −→ Lp(M; �1)(

ukn

)
k,n≥0

×
(
vkn

)
k,n≥0

�−→
( ∑

k

uknvkn

)
n≥0

is contractive (in fact, Lp(M; �1) is just the quotient space of Lp(M; �r
2(N

2)) ×
Lp(M; �c

2(N
2)) by the kernel of B). Thus by complex interpolation for bilinear

maps (cf. [BeL]), we deduce that

B : Lp(M; �r
2(N

2)) × Lp(M; �c
2(N

2)) →
(
Lp0(M; �1), Lp1(M; �1)

)
θ

is contractive. This yields

(2.1) Lp(M; �1) ⊂
(
Lp0(M; �1), Lp1(M; �1)

)
θ
, a contractive inclusion.



396 MARIUS JUNGE AND QUANHUA XU

Similarly, using the complex interpolation for trilinear maps, we obtain the fol-
lowing contractive inclusion

(2.2) Lp(M; �∞) ⊂
(
Lp0(M; �∞), Lp1(M; �∞)

)
θ

.

Alternatively, this can be easily proved by using directly the factorization of ele-
ments in Lp(M; �∞).

Dualizing the corresponding inclusion of (2.1) for finite sequences, we get(
Lp′

0
(M; �n

∞),
(
Lp1(M; �n

1 )
)∗)θ ⊂ Lp′(M; �n

∞),

where (·, ·)θ denotes Calderón’s second complex interpolation method. However,(
Lp′

0
(M; �n

∞),
(
Lp1(M; �n

1 )
)∗)

θ
⊂

(
Lp′

0
(M; �n

∞),
(
Lp1(M; �n

1 )
)∗)θ

.

It follows that (
Lp′

0
(M; �n

∞),
(
Lp1(M; �n

1 )
)∗)

θ
⊂ Lp′(M; �n

∞).

Since Lp′
0
(M; �n

∞) ∩
(
Lp1(M; �n

1 )
)∗ is dense in the complex interpolation space on

the left and

Lp′
0
(M; �n

∞) ∩
(
Lp1(M; �n

1 )
)∗ ⊂ Lp′

0
(M; �n

∞) ∩ Lp′
1
(M; �n

∞),

we deduce that(
Lp′

0
(M; �n

∞), Lp′
1
(M; �n

∞)
)
θ
⊂ Lp′(M; �n

∞), a contractive inclusion.

Reformulating this for the indices p0, p1, we have(
Lp0(M; �n

∞), Lp1(M; �n
∞)

)
θ
⊂ Lp(M; �n

∞), a contractive inclusion.

From this we easily get the same inclusion for infinite sequence spaces. Indeed, let
x = (xk)k≥0 be an element in

(
Lp0(M; �∞), Lp1(M; �∞)

)
θ

of norm ≤ 1 and let
x(n) = (x0, x1, ..., xn, 0, 0, ...). Then x(n) ∈

(
Lp0(M; �n+1

∞ ), Lp1(M; �n+1
∞ )

)
θ

and is
of norm ≤ 1. Thus x(n) ∈ Lp(M; �n+1

∞ ) and is of norm ≤ 1. Consequently,

sup
n

∥∥x(n)
∥∥

Lp(M;�∞)
≤ 1.

Therefore, by Proposition 2.1, ii), we deduce that x belongs to the unit ball of
Lp(M; �∞), and so by homogeneity, we obtain the converse inclusion of (2.2).

The converse inclusion of (2.1) can be proved similarly. But this time instead
of Proposition 2.1, it suffices to use the fact that finite sequences are dense in(
Lp0(M; �1), Lp1(M; �1)

)
θ
. We omit the details. �

Remark. In a forthcoming paper we will show that the interpolation equalities in
Proposition 2.5 are no longer true for the real interpolation. This is one of the
difficulties we will encounter for proving the Marcinkiewicz type theorem in the
next section.

3. An interpolation theorem

The main result of this section is a Marcinkiewicz type interpolation theorem
for Lp(M; �∞). It is the key to our proof of the noncommutative maximal ergodic
inequalities. We first introduce the following notion. For every integer n ≥ 0
assume given a map Sn : L+

p (M) → L+
0 (M). Set S = (Sn)n≥0. Thus S is a map

which sends positive operators to sequences of positive operators. We say that S
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is of weak type (p, p) (p < ∞) if there is a positive constant C such that for any
x ∈ L+

p (M) and any λ > 0 there is a projection e ∈ M such that

τ (e⊥) ≤
[
C

‖x‖p

λ

]p and e
(
Sn(x)

)
e ≤ λ , ∀ n ≥ 0.

Similarly, we say that S is of type (p, p) (this time p may be equal to ∞) if there is a
positive constant C such that for any x ∈ L+

p (M) there is an a ∈ L+
p (M) satisfying

‖a‖p ≤ C ‖x‖p and Sn(x) ≤ a, ∀ n ≥ 0.

In other words, S is of type (p, p) iff

‖S(x)‖Lp(M; �∞) ≤ C ‖x‖p , ∀ x ∈ L+
p (M).

Theorem 3.1. Let 1 ≤ p0 < p1 ≤ ∞. Let S =
(
Sn

)
n≥0

be a sequence of maps
from L+

p0
(M) + L+

p1
(M) into L+

0 (M). Assume that S is subadditive in the sense
that Sn(x + y) ≤ Sn(x) + Sn(y) for all n ∈ N. If S is of weak type (p0, p0) with
constant C0 and of type (p1, p1) with constant C1, then for any p0 < p < p1, S is
of type (p, p) with constant Cp satisfying

(3.1) Cp ≤ C C1−θ
0 Cθ

1

( 1
p0

− 1
p

)−2
,

where θ is determined by 1/p = (1 − θ)/p0 + θ/p1 and C is a universal constant.

The reader can easily recognize that this result is a noncommutative analogue
of the classical Marcinkiewicz interpolation theorem. Recall that in the classical
case the constant Cp is majorized by C1−θ

0 Cθ
1

(
1/p0 − 1/p

)−1, i.e., without the
square in (3.1). We will see later that the estimate given by (3.1) is optimal in the
noncommutative setting. This difference indicates that though similar in form to
the classical Marcinkiewicz interpolation theorem, Theorem 3.1 cannot be proved
by the standard argument in the commutative case. The rest of this section is
entirely devoted to its proof. In the following S will be fixed as in the theorem
above; p will denote a number such that p0 < p < p1, and θ is determined by
1/p = (1 − θ)/p0 + θ/p1. C will stand for a universal constant.

The following lemma is entirely elementary.

Lemma 3.2. Let (xij) be a finite matrix of bounded operators on a Hilbert space
H. Let (ei) and (fi) be two sequences of pairwise disjoint projections in B(H).
Then ∥∥∑

i,j

eixijfj

∥∥
B(H)

≤
∥∥(

‖eixijfj‖B(H)

)
i,j

∥∥
B(�2)

.

Proof. Let ξ, η ∈ H. Then

〈ξ,
∑
i,j

eixijfjη〉 =
∑
i,j

‖eixijfj‖ ‖eiξ‖ ‖fjη‖

≤
∥∥(

‖eixijfj‖B(H)

)
i,j

∥∥
B(�2)

(∑
i

‖eiξ‖2
) 1

2
( ∑

j

‖fjη‖2
) 1

2

≤
∥∥(

‖ei xij fj‖B(H)

)
i,j

∥∥
B(�2)

‖ξ‖ ‖η‖.

This yields the desired inequality. �
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Lemma 3.3. Let x ∈ L+
p0

(M) and λ > 0. Then there is an e ∈ P(M) such that

τ (e⊥) ≤
[
C0λ

−1‖x‖p0

]p0 ,
∥∥ sup

n

+
(
eSn(x)e

)∥∥
p
≤ C(1−p0

p
)−1− 1

p
[
C0‖x‖p0

] p0
p λ1− p0

p .

Proof. Fix an x ∈ L+
p0

(M). Set xn = Sn(x) for n ∈ N. Since S is of weak type
(p0, p0), given k ∈ Z there is fk ∈ P(M) such that

τ (f⊥
k ) ≤

[
C02−k‖x‖p0

]p0 and fkxnfk ≤ 2k , ∀ n ∈ N.

Let
gk =

∨
j≥k

f⊥
j .

Then (gk)k∈Z is a decreasing sequence of projections and

τ (gk) ≤
[
C02−k+1‖x‖p0

]p0 .

Thus limk→+∞ gk = 0. Put g−∞ = limk→−∞ gk. Then g−∞ ≥ gk ≥ f⊥
k , and so

g⊥−∞ ≤ g⊥k ≤ fk for all k ∈ Z. Put

dk = gk − gk+1 and ek =
∑
j≤k

dj .

Then ek = g−∞ − gk+1. We claim that

(g⊥−∞ + ek) xn (g⊥−∞ + ek) = ekxnek.

Since g⊥−∞ ≤ fk, by the choice of fk,

g⊥−∞xng⊥−∞ = g⊥−∞
(
fkxnfk

)
g⊥−∞ ≤ 2kg⊥−∞ , k ∈ Z;

thus letting k → −∞, we get g⊥−∞xng⊥−∞ = 0. On the other hand,

‖g⊥−∞xnek‖∞ ≤ ‖g⊥−∞xng⊥−∞‖
1
2∞ ‖ekxnek‖

1
2∞ = 0 ,

whence
g⊥−∞xnek = 0 = ekxng⊥−∞ .

Therefore our claim is proved.
Now let 0 < s < 1 such that sp > p0. Set

bk =
∑
j≤k

2jsdj .

Since the dj are disjoint projections, we have

‖bk‖p =
( ∑

j≤k

2jspτ (dj)
) 1

p

≤
( ∑

j≤k

2jsp
[
C02−j+1‖x‖p0

]p0
) 1

p

≤ C(sp − p0)−
1
p
(
C0‖x‖p0

) p0
p 2k(s−p0

p ) .

On the other hand, since the support of bk is equal to ek, ekb
− 1

2
k can be regarded

as a well-defined operator, and we have

ekb
− 1

2
k =

∑
j≤k

2−
js
2 dj .
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Thus
b
− 1

2
k ekxnekb

− 1
2

k =
∑

i,j≤k

2−
is
2 2−

js
2 dixndj .

Since di ≤ g⊥i+1 ≤ fi+1, then by the choice of fi, we get

‖dixndj‖∞ ≤ ‖dixndi‖
1
2∞ ‖djxndj‖

1
2∞ ≤ 2

i+1
2 2

j+1
2 .

Therefore, using Lemma 3.2, we deduce

(3.2)
∥∥b

− 1
2

k ekxnekb
− 1

2
k

∥∥
∞ ≤ C(1 − s)−1 2k(1−s) .

Note that the sequence (ekxnek)n≥0 admits the following factorization:

ekxnek = b
1
2
k

[
b
− 1

2
k ekxnekb

− 1
2

k

]
b

1
2
k .

Combining this with the previous inequalities, we obtain∥∥ sup
n

+
(
ekxnek

)∥∥
p
≤ C(1 − s)−1(sp − p0)−

1
p
(
C0‖x‖p0

) p0
p 2k(1− p0

p ) .

Thus the choice of s = (1 + p0)/(1 + p) yields∥∥ sup
n

+
(
ekxnek

)∥∥
p
≤ C(1 − p0

p
)−1− 1

p
(
C0‖x‖p0

) p0
p 2k(1− p0

p ) .

Given λ > 0 we choose k such that 2k ≤ λ < 2k+1. Then e = g⊥−∞ + ek is the
desired projection. �

Remark. If we simply use the triangle inequality to majorize
∥∥b

− 1
2

k ekxnekb
− 1

2
k

∥∥
∞

instead of Lemma 3.2, the estimates in (3.2) become (1− s)−2. This does not give
the right estimate in (3.1).

The following lemma is a key step towards the proof of Theorem 3.1.

Lemma 3.4. For any x ∈ L+
p0

(M) ∩ L+
p1

(M),∥∥ sup
n

+Sn(x)
∥∥

p
≤ C(1 − p0

p
)−1− 1

p
(
C0‖x‖p0

)1−θ(
C1‖x‖p1

)θ
.

Proof. Fix x ∈ L+
p0

(M) ∩ L+
p1

(M), and set xn = Sn(x) as before. Let λ > 0.
Choose e ∈ P(M) as in Lemma 3.3. Then

xn = exne + e⊥xne + exne⊥ + e⊥xne⊥ .

Let us first estimate ‖ supn e⊥xne⊥‖p . Since S is of type (p1, p1), there is an a ∈
L+

p1
(M) such that

‖a‖p1 ≤ C1‖x‖p1 and xn ≤ a, ∀ n ∈ N.

Thus
e⊥xne⊥ ≤ e⊥ae⊥, ∀ n ∈ N.

With r determined by 1/r = 1/p − 1/p1, by the Hölder inequality, we have

‖e⊥ae⊥‖p ≤
(
τ (e⊥)

) 1
r ‖a‖p1 ≤

(
C0‖x‖p0λ

−1
) p0

r C1‖x‖p1 .

Therefore ∥∥ sup
n

+
(
e⊥xne⊥

)∥∥
p
≤

(
C0‖x‖p0λ

−1
) p0

r C1‖x‖p1 .



400 MARIUS JUNGE AND QUANHUA XU

For the two mixed terms, by the Cauchy-Schwarz inequality in Proposition 2.1, we
have ∥∥ sup

n

+
(
e⊥xne

)∥∥
p
≤

∥∥ sup
n

+
(
e⊥xne⊥

)∥∥ 1
2

p

∥∥ sup
n

+
(
exne

)∥∥ 1
2

p
,

and the same inequality holds for the other mixed term. Hence, we deduce∥∥ sup
n

+xn

∥∥
p
≤ 2

(∥∥ sup
n

+
(
exne

)∥∥
p

+
∥∥ sup

n

+
(
e⊥xne⊥

)∥∥
p

)
≤ C(1 − p0

p
)−1− 1

p
(
C0‖x‖p0

) p0
p λ1− p0

p + C
(
C0‖x‖p0λ

−1
) p0

r C1‖x‖p1 .

Choosing λ such that

λ1− p0
p1 =

(
C0‖x‖p0

)− p0
p1 C1‖x‖p1 ,

we obtain the desired inequality. �

The previous lemma can be restated as follows.

Lemma 3.5. For any x ∈ L+
p,1(M),∥∥ sup

n

+Sn(x)
∥∥

p
≤ C(1 − p0

p
)−1− 1

p C1−θ
0 Cθ

1 ‖x‖p,1 .

We will need to interpolate a compatible couple of cones. We refer to [BeL] for
the J- and K-methods in interpolation theory for Banach spaces. Let (B0, B1) be a
compatible couple of Banach spaces. Let Ai ⊂ Bi be a closed cone (i = 0, 1). Given
0 < θ < 1 and 1 ≤ q ≤ ∞ we can define the J-method for the couple (A0, A1). More
precisely, (A0, A1)θ,q;J consists of all x ∈ B0 + B1 which admit a decomposition of
the following form:

x =
∫ ∞

0

u(t)
dt

t
(convergence in B0 + B1)

with u(t) ∈ A0 ∩ A1 such that(∫ ∞

0

[
t−θ max

(
‖u(t)‖B0 , t ‖u(t)‖B1

)]q dt

t

) 1
q

< ∞.

We define

‖x‖(A0,A1)θ,q;J = inf
{( ∫ ∞

0

[
t−θ max

(
‖u(t)‖B0 , t ‖u(t)‖B1

)]q dt

t

) 1
q
}

,

where the infimum runs over all decompositions of x as above.
It is clear that

(A0, A1)θ,q;J ⊂ (B0, B1)θ,q;J , a contractive inclusion.

But in general the norm in (A0, A1)θ,q;J is not equivalent to that of (B0, B1)θ,q;J

when restricted to (A0, A1)θ,q;J . However, this is true for a couple of noncommu-
tative Lp-spaces.

Remark 3.6. The following natural inclusion(
L+

p0,q0
(M), L+

p1,q1
(M)

)
θ,q;J

⊂
(
Lp0,q0(M), Lp1,q1(M)

)
θ,q;J

is isometric.
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Proof. Let x ∈
(
L+

p0,q0
(M), L+

p1,q1
(M)

)
θ,q;J

. Let

x =
∫ ∞

0

u(t)
dt

t

be a decomposition of x relative to
(
Lp0,q0(M), Lp1,q1(M)

)
θ,q;J

with u(t) in the
space Lp0,q0(M) ∩ Lp1,q1(M) such that( ∫ ∞

0

[
t−θ max

(
‖u(t)‖p0,q0 , t ‖u(t)‖p1,q1

)]q dt

t

) 1
q

< ∞.

Then we must find a similar decomposition of x with all u(t) in L+
p0,q0

(M) ∩
L+

p1,q1
(M) without increasing the integral above. Since x ≥ 0, we can assume

all u(t) above to be selfadjoint. Decomposing u(t) into its positive and negative
part, we have

x =
∫ ∞

0

u(t)+
dt

t
−

∫ ∞

0

u(t)−
dt

t
≤

∫ ∞

0

u(t)+
dt

t
.

Therefore there is a contraction v ∈ M such that

x
1
2 = v

[ ∫ ∞

0

u(t)+
dt

t

] 1
2

,

and so

x

∫ ∞

0

[
v u(t)+ v∗

] dt

t

yields the desired decomposition of x. �

We will need the following result from [Ho], which gives the optimal estimates
for the equivalence constants in (1.2). Note that this result is stated in [Ho] for
the commutative Lp-spaces only. It is easy to see that the noncommutative result
follows immediately.

Lemma 3.7. Let 1 ≤ p0 �= p1 ≤ ∞ and 1 ≤ q0, q1, q ≤ ∞. Then the equivalence
constants in the following equality

Lp,q(M) =
(
Lp0,q0(M), Lp1,q1(M)

)
θ,q;K

are estimated as follows:

C−1 θ−min( 1
q , 1

q0
) (1 − θ)−min( 1

q , 1
q1

) ‖x‖p,q ≤ ‖x‖θ,q;K

≤ C θ−max( 1
q , 1

q0
) (1 − θ)−max( 1

q , 1
q1

) ‖x‖p,q .

Lemma 3.8. The norm of the following inclusion

Lp(M) ⊂
(
Lp0,1(M), Lp1(M)

)
θ,p;J

is majorized by C (1 − θ)1−1/p.

Proof. This is an immediate consequence of Lemma 3.7 by duality. �

Our last result in this section concerns the real interpolation of the positive cones
L+

p (M; �∞) of the spaces Lp(M; �∞). Together with Lemma 3.5, it constitutes the
main technical part of the proof of Theorem 3.1.



402 MARIUS JUNGE AND QUANHUA XU

Lemma 3.9. We have(
L+

p0
(M; �∞), L+

p1
(M; �∞)

)
θ,p;J

⊂ L+
p (M; �∞)

and the inclusion norm is ≤ Cθ−1+1/p(1 − θ)−1+1/p1 .

Proof. Let x ∈
(
L+

p0
(M; �∞), L+

p1
(M; �∞)

)
θ,p;J

of norm < 1. Choose u(t) in the
space L+

p0
(M; �∞) ∩ L+

p1
(M; �∞) such that

x =
∫ ∞

0

u(t)
dt

t
and

∫ ∞

0

[
t−θ Jt(u(t))

]p dt

t
< 1.

Here we have set

Jt(y) = max
(
‖y‖L+

p0 (M;�∞), t ‖y‖L+
p1 (M;�∞)

)
.

In order to prove x ∈ L+
p (M; �∞), we use duality. Let y = (yn)n ∈ L+

p′(M; �1) be of
norm ≤ 1. Set a =

∑
n yn. Then ‖a‖p′ ≤ 1. Let Kt denote the K-functional relative

to (Lp′
0
(M), Lp′

1
(M)), i.e., Kt(·) is the norm of the space Lp′

0
(M)+tLp′

1
(M). Since

a ≥ 0, for every t > 0 there is a spectral projection e(t) of a such that

‖e(t)a‖p′
0
+ t−1‖e(t)⊥a‖p′

1
≤ 2Kt−1(a).

Then

〈x, y〉 =
∑

n

τ (xnyn) =
∫ ∞

0

∑
n

τ [un(t)yn]
dt

t

=
∫ ∞

0

∑
n

τ
[
un(t)[e(t)yne(t) + e(t)⊥yne(t)⊥ + e(t)yne(t)⊥ + e(t)⊥yne(t)]

] dt

t
.

Since yn is positive, we have

e(t)yne(t)⊥ + e(t)⊥yne(t) ≤ e(t)yne(t) + e(t)⊥yne(t)⊥ .

Hence un(t) ≥ 0 implies

τ
[
un(t)[e(t)yne(t)⊥ + e(t)⊥yne(t)]

]
≤ τ

[
un(t)[e(t)yne(t) + e(t)⊥yne(t)⊥]

]
.

Therefore

〈x, y〉 ≤ 2
∫ ∞

0

∑
n

τ
[
un(t)[e(t)yne(t) + e(t)⊥yne(t)⊥]

] dt

t

= 2
∫ ∞

0

[
〈u(t), w(t)〉+ 〈u(t), v(t)〉

] dt

t
,

where
w(t) =

(
e(t)yne(t)

)
n≥0

and v(t) =
(
e(t)⊥yne(t)⊥

)
n≥0

.

Note that
‖w(t)‖Lp′

0
(M;�1) =

∥∥∑
n

e(t)yne(t)
∥∥

p′
0

= ‖e(t)a‖p′
0

.

Similarly,
‖v(t)‖Lp′

1
(M;�1) = ‖e(t)⊥a‖p′

1
.
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It then follows that

〈x, y〉 ≤ 2
∫ ∞

0

[
‖u(t)‖Lp0 (M;�∞) ‖w(t)‖Lp′

0
(M;�1)

+ ‖u(t)‖Lp1(M;�∞) ‖v(t)‖Lp′
1
(M;�1)

] dt

t

≤ 4
∫ ∞

0

Jt(u(t)) Kt−1(a)
dt

t

≤ 4
( ∫ ∞

0

[
t−θ Jt(u(t))

]p dt

t

) 1
p

( ∫ ∞

0

[
tθ Kt−1(a)

]p′ dt

t

) 1
p′

≤ 4
∥∥a

∥∥
(Lp′

0
(M), Lp′

1
(M))θ,p′;K

.

By Lemma 3.7, the norm of the following inclusion

Lp′(M) ⊂ (Lp′
0
(M), Lp′

1
(M))θ,p′;K

is controlled by Cθ−1/p′
(1 − θ)−1/p′

1 . Hence we deduce

〈x, y〉 ≤ C θ−
1
p′ (1 − θ)

− 1
p′
1 .

Finally, taking the supremum over all positive y in the unit ball of Lp′(M; �1), we
obtain the announced result. �

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Fix x ∈ L+
p (M) such that ‖x‖p ≤ 1. Let p0 < q < p.

Let η and ϕ be determined by 1/q = (1 − η)/p0 + η/p1 and (1 − ϕ)η + ϕ = θ.
Applying Remark 3.6 and Lemma 3.8 with q in place of p0, we deduce that x ∈(
L+

q,1(M), L+
p1

(M)
)
ϕ,p;J

, and x admits a decomposition

x =
∫ ∞

0

u(t)
dt

t
,

such that ∫ ∞

0

[
t−ϕ max

(
‖u(t)‖q,1 , t‖u(t)‖p1

)]p dt

t
≤ Cp (1 − ϕ)p−1 .

Set v(t) = u(Cη−1
0 C1−η

1 t). Then we again have

x =
∫ ∞

0

v(t)
dt

t
.

Therefore, the subadditivity of S implies

(3.3) S(x) ≤
∫ ∞

0

S(v(t))
dt

t

def= y .

Applying Lemma 3.5 with q instead of p and by the type (p1, p1) of S, we deduce

max
(
‖S(v(t))‖L+

q (M;�∞) , t‖S(v(t))‖L+
p1(M;�∞)

)
≤ C (1 − p0

q
)−1− 1

q max
(
C1−η

0 Cη
1 ‖v(t)‖q,1, t C1‖v(t)‖p1

)
.
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Hence∫ ∞

0

[
t−ϕ max

(
‖S(v(t))‖L+

q (M;�∞) , t‖S(v(t))‖L+
p1(M;�∞)

)]p dt

t

≤
[
C (1 − p0

q
)−1− 1

q

]p
∫ ∞

0

[
t−ϕ max

(
C1−η

0 Cη
1 ‖v(t)‖q,1, t C1‖v(t)‖p1

)]p dt

t

=
[
C C1−θ

0 Cθ
1 (1 − p0

q
)−1− 1

q

]p
∫ ∞

0

[
t−ϕ max

(
‖u(t)‖q,1, t ‖u(t)‖p1

)]p dt

t

≤
[
C C1−θ

0 Cθ
1 (1 − p0

q
)−1− 1

q (1 − ϕ)1−
1
p

]p

.

It thus follows that

y ∈
(
L+

q (M; �∞), L+
p1

(M; �∞)
)
ϕ,p;J

and
‖y‖ϕ,p;J ≤ C C1−θ

0 Cθ
1 (1 − p0

q
)−1− 1

q (1 − ϕ)1−
1
p .

Therefore, by Lemma 3.9 (applied with q and ϕ in place of p0 and θ, respectively),
we deduce that y ∈ L+

p (M; �∞) and

‖y‖Lp(M;�∞) ≤ C C1−θ
0 Cθ

1 (1 − p0

q
)−1− 1

q ϕ−1+ 1
p (1 − ϕ)−

1
p + 1

p1

≤ C C1−θ
0 Cθ

1 (1 − p0

q
)−1− 1

q (
1
q
− 1

p
)−1+ 1

p .

Choosing q such that
1
p0

− 1
q

=
1
2

( 1
p0

− 1
p

)
,

we get

‖y‖Lp(M;�∞) ≤ C C1−θ
0 Cθ

1

( 1
p0

− 1
p

)−2
.

This last inequality, together with (3.3), implies the desired inequality (3.1). Thus
we have completed the proof of Theorem 3.1. �

4. Maximal ergodic inequalities

The following is our main maximal ergodic inequality in noncommutative Lp-
spaces. Restricted to the positive cone L+

p (M), it becomes Theorem 0.1, i). Recall
that for a map T with (0.I)–(0.III), T also denotes its extensions to Lp(M) given
by Lemma 1.1.

Theorem 4.1. Let T be a linear map with (0.I)–(0.III). Let

Mn ≡ Mn(T ) =
1

n + 1

n∑
k=0

T k.

Then for every 1 < p ≤ ∞ we have

(4.1)
∥∥ sup

n

+Mn(x)
∥∥

p
≤ Cp ‖x‖p , ∀ x ∈ Lp(M).

Moreover, Cp ≤ C p2(p − 1)−2, and this is the optimal order of Cp as p → 1.
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Proof. Decomposing an operator into a linear combination of four positive ones,
we can assume x ∈ L+

p (M). Now consider each Mn as a map defined on L+
1 (M) +

L+
∞(M). Then Mn is positive and additive (and so subadditive too). Let M =

(Mn)n≥0. Yeadon’s inequality says that M is of weak type (1,1). On the other
hand, M is trivially of type (∞,∞) with constant 1. Therefore, by Theorem 3.1,
M is of type (p, p) for every 1 < p < ∞ with constant Cp verifying

Cp ≤ C
(
1 − 1

p

)−2
.

Thus we have proved (4.1). The optimality of this estimate follows from the op-
timal order of the best constant in the noncommutative Doob maximal inequality
obtained in [JX3] and the following useful lemma due to Neveu, for which the
validity in the noncommutative setting was observed by Dang-Ngoc [Da].

Lemma 4.2. Let (Mn)n≥0 be a decreasing sequence of von Neumann subalgebras
of M. Assume that for every n there is a normal faithful conditional expectation
En from M onto Mn such that τ ◦ En = τ . Let (αn) be an increasing sequence in
[0, 1) with α0 = 0. Then the map

T =
∑
n≥0

(αn+1 − αn)En

satisfies all conditions (0.I)–(0.IV). Moreover, given any ε > 0 one can choose (αn)
and an increasing sequence (mn) of positive integers such that∑

n≥0

∥∥Mmn
(T ) − En

∥∥ < ε,

where the norm is relative to Lp(M) for any 1 ≤ p ≤ ∞.

Note that if additionally limn αn = 1, T preserves the trace τ since the En

preserve τ . With the help of this lemma, one sees that the noncommutative maximal
inequality (4.1) implies the noncommutative Doob maximal inequality proved in
[Ju] and δp ≤ Cp, where δp is the best constant in the latter inequality. On the
other hand, it was shown in [JX3] that the optimal order of δp is (p−1)−2 as p → 1.
It then follows that the estimate for Cp in (4.1) is optimal. Theorem 4.1 is thus
proved. �

Remark. The optimal order of the constant Cp in (4.1) implies that the estimate
given in (3.1) is the best possible as p → p0 (with p0 = 1). Recall that in the
commutative case the best Cp in (4.1) is of order (p− 1)−1 as p → 1. This explains
partly the extra (noncommutative) effort in getting (4.1).

We will see in section 6 that Theorem 4.1 implies that the ergodic averages
(Mn(x))n converge bilaterally almost uniformly for any x ∈ Lp(M). However, for
p > 2 the bilateral almost uniform convergence can be improved to the almost
uniform convergence. This improvement will be a consequence of the following
corollary of Theorem 4.1. For the formulation of this result we need further notation
from [Mu, DJ1]. Let 2 ≤ p ≤ ∞ and I be an index set. We define the space
Lp(M; �c

∞(I)) as the family of all (xi)i∈I ⊂ Lp(M) for which there are an a ∈
Lp(M) and (yi)i∈I ⊂ L∞(M) such that

xi = yia and sup
i∈I

‖yi‖∞ < ∞.
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‖(xi)‖Lp(M;�c
∞(I)) is then defined to be the infimum {supi∈I ‖yi‖∞ ‖a‖p} over all

factorizations of (xi) as above. It is easy to check that ‖ ‖Lp(M;�c
∞(I)) is a norm,

which makes Lp(M; �c
∞(I)) a Banach space. Note that (xi) ∈ Lp(M; �c

∞(I)) iff
(x∗

i xi) ∈ L p
2
(M; �∞(I)). If I = N, Lp(M; �c

∞(I)) is simply denoted by Lp(M; �c
∞).

Corollary 4.3. Let T be as in Theorem 4.1 and 2 < p ≤ ∞. Then∥∥(
Mn(x)

)
n≥0

∥∥
Lp(M;�c

∞)
≤

√
Cp/2 ‖x‖p , ∀ x ∈ Lp(M).

Proof. Let x ∈ Lp(M). By decomposing x into its real and imaginary parts, we
can assume x is selfadjoint. Since T is positive, so is Mn for every n. Thus by the
classical Kadison inequality [Ka], we have

(Mn(x))2 ≤ Mn(x2).

Thus applying Theorem 4.1 to x2 ∈ Lp/2(M) we get b ∈ L+
p/2(M) such that

‖b‖p/2 ≤ Cp/2 ‖x2‖p/2 and Mn(x2) ≤ b, ∀ n ≥ 0.

Hence (Mn(x))2 ≤ b. It then follows that for each n there is a contraction yn ∈ M
such that Mn(x) = ynb1/2. This gives the desired factorization of

(
Mn(x)

)
n≥0

as
an element in Lp(M; �c

∞) and thus proves the corollary. �

The following maximal inequality for multiple ergodic averages is an easy con-
sequence of Theorem 4.1.

Corollary 4.4. Let T1, ... , Td be d maps satisfying (0.I)–(0.III). Set

Mn1,... ,nd
=

[ d∏
j=1

1
nj + 1

] nd∑
kd=0

· · ·
n1∑

k1=0

T kd

d · · · T k1
1 .

Then for any 1 < p < ∞,∥∥ sup+

n1,... ,nd

Mn1,... ,nd
(x)

∥∥
p
≤ Cd

p ‖x‖p , ∀ x ∈ Lp(M)

and for 2 < p < ∞,∥∥(
Mn1,... ,nd

(x)
)
n1,... ,nd

∥∥
Lp(M;�c

∞(Nd))
≤ C

d
2
p/2 ‖x‖p , ∀ x ∈ Lp(M).

Proof. The first part is obtained from Theorem 4.1 by iteration. The second is
proved in the same way as Corollary 4.3. �

By a standard discretization argument, Theorem 4.1 and the previous corollaries
imply the following maximal ergodic inequalities for semigroups.

Theorem 4.5. i) Let (Tt)t≥0 be a semigroup satisfying the conditions (0.I)–(0.III).
Let

Mt =
1
t

∫ t

0

Ts ds, t > 0.

Then for 1 < p < ∞,∥∥ sup
t

+Mt(x)
∥∥

p
≤ Cp ‖x‖p , ∀ x ∈ Lp(M)

and for 2 < p < ∞,∥∥(
Mt(x)

)
t>0

∥∥
Lp(M;�c

∞(R+))
≤

√
Cp/2 ‖x‖p , ∀ x ∈ Lp(M).
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ii) Let (T (1)
t )t≥0, ..., (T

(d)
t )t≥0 be d such semigroups. Let

Mt1,... ,td
=

1
t1 · · · td

∫ td

0

T (d)
sd

dsd · · ·
∫ t1

0

T (1)
s1

ds1.

Then for any 1 < p < ∞,∥∥ sup+

t1>0,... ,td>0
Mt1, ... ,td

(x)
∥∥

p
≤ Cd

p ‖x‖p , ∀ x ∈ Lp(M)

and for 2 < p < ∞,∥∥(
Mt1,... ,td

(x)
)
t1,... ,td

∥∥
Lp(M;�c

∞(Rd))
≤ C

d
2
p/2 ‖x‖p , ∀ x ∈ Lp(M).

Proof. We show only the first inequality in i). Recall that the semigroup (Tt)t≥0

is strongly continuous on Lp(M); i.e., for any x ∈ Lp(M) the function t �→ Tt(x)
is continuous from [0,∞) to Lp(M), and so is the function t �→ Mt(x). Thus to
prove the first inequality in i) it suffices to consider Mt(x) for t in a dense subset of
(0,∞), for instance, the subset {n2−m : m, n ∈ N}. Using once more the strong
continuity of (Tt)t≥0, we can replace the integral defining Mt(x) by a Riemann sum.
Thus we have approximately

Mn2−m(x) =
1

n2−m

n−1∑
k=0

∫ (k+1)2−m

k2−m

Ts(x) ds

≈ 1
n

n−1∑
k=0

Tk2−m(x) = Mn−1(T2−m)(x).

Thus by Theorem 4.1 applied to T = T2−m , we obtain∥∥ sup
n

+Mn2−m(x)
∥∥

p
≤ Cp ‖x‖p .

Since the subsets {n2−m : n ∈ N} are increasing in m, by Proposition 2.1, we get∥∥ sup+

m,n
Mn2−m(x)

∥∥
p
≤ Cp ‖x‖p .

This is the desired inequality. �

It is easy to show that the ergodic averages in Theorem 4.5 can be replaced
by many other averages. Let us consider, for instance, the Poisson semigroup
subordinate to (Tt):

(4.2) Pt =
1√
π

∫ ∞

0

e−u

√
u

Tt2/4u du.

Recall that if A denotes the infinitesimal generator of (Tt), then that of (Pt) is
−(−A)1/2. More generally, given any 0 < α < 1, we can consider a semigroup (Pt)
subordinate to (Tt) via the following formula:

(4.3) Pt =
∫ ∞

0

ϕ(s)Ttβs ds,

where β = 1/α and ϕ is the function on R+ defined by

ϕ(s) =
∫ ∞

0

exp
[
st cos θ − tα cos(αθ)

]
× sin

[
st sin θ − tα cos(αθ) + θ

]
dt,

θ being any number in [π/2, π]. When α = 1/2, (4.3) reduces to (4.2). Note that
the infinitesimal generator of (Pt) in (4.3) is −(−A)α (see [Yo, IX]).
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Corollary 4.6. Let (Tt) be a semigroup verifying (0.I)–(0.III). Let 0 < α < 1 and
(Pt) be the semigroup subordinate to (Tt) as in (4.3). Then for 1 < p ≤ ∞,

(4.4)
∥∥ sup

t

+Pt(x)
∥∥

p
≤ Cα,p ‖x‖p , ∀ x ∈ Lp(M)

and for 2 < p < ∞,∥∥(
Pt(x)

)
t>0

∥∥
Lp(M;�c

∞(R+))
≤ C ′

α,p ‖x‖p , ∀ x ∈ Lp(M).

Proof. Let us first rewrite (4.3) as

Pt = t−β

∫ ∞

0

ϕ(t−βs)Ts ds = t−β

∫ ∞

0

ϕ(t−βs)
d

ds
(sMs) ds.

Thus by integration by parts,

Pt = t−β

∫ ∞

0

ϕ′(t−βs) t−βs Ms ds =
∫ ∞

0

sϕ′(s) Mtβs ds.

Therefore, by Theorem 4.5, i), for any x ∈ Lp(M),∥∥ sup
t

+Pt(x)
∥∥ ≤ Cp

∫ ∞

0

s|ϕ′(s)| ds ‖x‖p.

It is easy to see that the integral on the right is finite by virtue of the definition of
ϕ. Thus we have proved (4.4). In the same way, we get the second inequality. �
Remark 4.7. Let (Tt) be a semigroup as in Theorem 4.5, i). Using Lemma 1.2 and
the preceding discretization argument, one can easily obtain the following weak
type (1,1) inequality: for any x ∈ L+

1 (M) and λ > 0 there is a projection e ∈ M
such that

sup
t>0

∥∥eMt(x)e
∥∥
∞ ≤ λ and τ (e⊥) ≤ ‖x‖1

λ
.

Moreover, Mt in the inequality above can be replaced by Pt in (4.3).

5. Maximal inequalities for symmetric contractions

The main result of this section is the following, which is a reformulation of
Theorem 0.1, ii) for general elements in Lp(M).

Theorem 5.1. Let T be a linear map on M satisfying (0.I)–(0.IV). Then for any
1 < p < ∞ we have

(5.1)
∥∥ sup

n

+Tn(x)
∥∥

p
≤ C ′

p ‖x‖p , ∀ x ∈ Lp(M),

where C ′
p is a constant depending only on p.

This is the noncommutative analogue of a classical inequality due to Stein (cf.
[St1]; see also [St2, Chapter III]). Stein’s approach is via complex interpolation. The
main ingredient is the maximal ergodic inequality (4.1), which allows us to deduce
similar maximal inequalities for fractional averages. We refer to [Sta] (and the
references therein) for more general maximal inequalities based on Rota’s dilation
theorem. (We are grateful to the referee for bringing [Sta] to our attention.) Let us
point out that Rota’s theorem is not sufficiently understood in the noncommutative
setting and hence Starr’s method is not yet available. It is Stein’s original approach
that suits well to the noncommutative setting. Thus we will follow the same pattern
as in [St2, Chapter III]. Throughout the remainder of this section T will be fixed
as in Theorem 5.1.
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We begin by introducing the fractional averages on the powers of T . Given a
complex number α and a nonnegative integer n, set

Aα
n =

(α + 1)(α + 2) · · · (α + n)
n!

and

Sα
n ≡ Sα

n (T ) =
n∑

k=0

Aα−1
n−k T k , Mα

n ≡ Mα
n (T ) = (n + 1)−α Sα

n .

The Mα
n are the so-called fractional averages of the T k. Note that M0

n = Tn and M1
n

is the usual ergodic average Mn already considered before. Also if α is a negative
integer −m, then

S−m
n = ∆m

n

(
(T k)k≥0

)
,

where ∆n denotes the first difference map on sequences; i.e.,

∆n(a) = an − an−1

for every sequence a = (an). Then ∆m
n = ∆n(∆m−1

n ) is defined by induction and
is the difference map of order m. Here and in the sequel we adopt the convention
that for any sequence (an)n≥0 we put an = 0 for n < 0. Since we will only consider
actions of ∆m

n on the sequence (T k)k≥0, we will simply put

∆m
n = ∆m

n

(
(T k)k≥0

)
.

Thus M−m
n = (n + 1)m∆m

n .
We will need a generalization of Theorem 5.1.

Theorem 5.2. Let T be as in Theorem 5.1 with the additional assumption that T is
positive as an operator on L2(M) (i.e., 〈x, Tx〉 = τ (x∗Tx) ≥ 0 for all x ∈ L2(M)).
Then for all α ∈ C and p ∈ (1,∞) we have

(5.2)
∥∥ sup

n

+Mα
n (x)

∥∥
p
≤ Cα,p ‖x‖p, ∀ x ∈ Lp(M) ,

where Cα,p is a constant depending only on α and p.

It is easy to see that Theorem 5.2 implies Theorem 5.1. Indeed, applying Theo-
rem 5.2 to T 2 with α = 0, we get∥∥ sup

n

+T 2n(x)
∥∥

p
≤ C ′

p ‖x‖p and
∥∥ sup

n

+T 2n+1(x)
∥∥

p
≤ C ′

p ‖Tx‖p ≤ C ′
p ‖x‖p

for every x ∈ Lp(M). Thus (5.1) follows.
As already said before, our proof of Theorem 5.2 will follow the pattern set up

by Stein. The main steps are as follows. First, using Theorem 4.1, we show that
(5.2) holds for all complex α whose real part is greater than 1. Then with the
help of the discrete Littlewood-Paley function, we deduce (5.2) for p = 2 and for
all nonpositive integers α. It is this L2 result which demands the symmetry of T .
For interpolation we need to modify slightly this L2 result into another one, i.e.,
to prove (5.2) for p = 2 again and for all complex α whose real part is of the form
−m + 1/2 with m ∈ N. Finally, complex interpolation permits us to conclude the
proof.

We will use the following elementary properties of the Aα
n: for all α ∈ C and

β > −1,

(5.3) Aα
n =

n∑
k=0

Aα−1
k , Aα

n − Aα−1
n = Aα

n−1 , Aβ
n ≤ cβ (n + 1)β ,
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where cβ is a positive constant depending only on β (noting that Aβ
n > 0 when

β > −1). The reader is referred to [Z, Vol. I, Chapter III.1] for these formulas. The
following estimates on Aα

n are also well known.

Lemma 5.3. Let α = β + iγ ∈ C.
i) If β = m + r with m ∈ Z and 0 < r < 1, then |Aα

n| ≤ exp(crγ
2) |Aβ

n|.
ii) If β > −1, then |Aα

n| ≤ exp(cβγ2) Aβ
n.

Proof. We have

Log
Aα

n

Aβ
n

=
n∑

k=1

Log(1 + i
γ

β + k
).

Writing
Aα

n

Aβ
n

= eu+iv with u, v ∈ R, we see that

u =
n∑

k=1

Re
(
Log(1 + i

γ

β + k
)
)
≤ γ2

2

n∑
k=1

1
(β + k)2

≤ cr γ2.

The second part is proved similarly. �

The following is an easy consequence of Theorem 4.1.

Lemma 5.4. Let α = β + i γ with β > 1. Then for all 1 < p < ∞,∥∥ sup
n

+Mα
n (x)

∥∥
p
≤ Cp,β exp(cβγ2)‖x‖p , ∀ x ∈ Lp(M).

Proof. Without loss of generality, we assume x ≥ 0. Let (yn) ⊂ L+
p′(M). Using

Lemma 5.3 and (5.3), we have

|τ (Mα
n (x)yn)| ≤ (n + 1)−β

n∑
k=0

|Aα−1
n−k| τ [T k(x)yn]

≤ Cβ exp(cβγ2) (n + 1)−β
n∑

k=0

(n − k + 1)β−1 τ [T k(x)yn]

≤ Cβ exp(cβγ2)(n + 1)−1
n∑

k=0

τ [T k(x)yn] = Cβ exp(cβγ2)τ [Mn(x)yn].

Therefore, ∑
n≥0

|τ (Mα
n (x)yn)| ≤ Cβ exp(cβ γ2)

∑
n≥0

τ [Mn(x)yn].

Taking the supremum over all (yn) ⊂ L+
p′(M) such that ‖

∑
n yn‖p′ ≤ 1 and using

Proposition 2.1, iii) and Theorem 4.1, we deduce the assertion. �

Our next step is to prove a similar maximal inequality in L2(M) for Mα
n with

α = −m+1/2 and m ∈ N. To this end we will need the following inequality on the
discrete Littlewood-Paley square function. Let

Bm
k = k(k − 1) · · · (k − m + 1) for m ≤ k and Bm

k = 0 for m > k.

Lemma 5.5. Let m ∈ N. Then for every selfadjoint operator x ∈ L2(M),

τ
[ ∑

k≥m

k
(
Bm−1

k−1 ∆m
k (x)

)2] ≤ Cm τ (x2).
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Proof. Note that if x is selfadjoint, so is ∆m
k (x) (recalling that T is positive).

Moreover, ∆m
k , considered as an operator on L2(M), is also selfadjoint by virtue

of (0.IV). Fix a unit selfadjoint x ∈ L2(M). We have

τ
[ ∑

k≥m

k
(
Bm−1

k−1 ∆m
k (x)

)2] =
∑
k≥m

k (Bm−1
k−1 )2 ‖∆m

k (x)‖2
2

=
∑
k≥m

k (Bm−1
k−1 )2 〈x, (∆m

k )2(x)〉,

where 〈 , 〉 stands for the scalar product on L2(M). Observe the following easily
checked formula:

∆m
k = (T − 1)m T k−m , ∀ k ≥ m.

Let T =
∫ 1

0

λ deλ be the spectral resolution of T on L2(M) (recalling that T is a

selfadjoint positive contraction on L2(M)). Then

〈x, (∆m
k )2(x)〉 =

∫ 1

0

(1 − λ)2m λ2k−2m d〈x, eλx〉 .

Since d〈x, eλx〉 is a probability measure on [0, 1], it remains to estimate∑
k≥m

k (Bm−1
k−1 )2 (1 − λ)2m λ2k−2m ≤ Cm + Cm (1 − λ)2m

∑
k≥2m−1

B2m−1
k λ2k−2m

≤ Cm + Cm λ2m−2(1 − λ)2m
∑

k≥2m−1

B2m−1
k (λ2)k−2m+1

≤ Cm + Cm λ2m−2(1 − λ)2m (1 − λ2)−2m ≤ Cm.

Therefore the lemma is proved. �

Lemma 5.6. Let m ∈ N. Then∥∥ sup
n

+
(
(n + 1)m ∆m

n (x)
)∥∥

2
≤ Cm ‖x‖2, ∀ x ∈ L2(M).

Proof. It suffices to show this for a positive x ∈ L2(M). To this end let us first
observe the following formula:

n∑
k=m

Bm+1
k (ak − ak−1) = Bm+1

n an − (m + 1)
n−1∑
k=m

Bm
k ak.

Applying this to ak = ∆m
k (x), we deduce

(5.4) Bm+1
n ∆m

n (x) = (m + 1)
n−1∑
k=m

Bm
k ∆m

k (x) +
n∑

k=m

Bm+1
k ∆m+1

k (x).
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Now let (yn) ⊂ L+
2 (M). Using the convexity of the operator-valued function x �→

|x|2, we have (recalling that ∆m
k (x) is selfadjoint)∣∣∣τ( 1

n + 1

n−1∑
k=m

Bm
k ∆m

k (x)yn

)∣∣∣ ≤ τ
( 1
n + 1

n−1∑
k=m

Bm
k |∆m

k (x)| yn

)
≤ τ

[( n−1∑
k=m

(k + 1)−1
∣∣Bm

k ∆m
k (x)

∣∣2) 1
2 yn

]
≤ τ

[( ∞∑
k=m

(k + 1)−1
∣∣Bm

k ∆m
k (x)

∣∣2) 1
2 yn

]
.

Hence, by Lemma 5.5,∣∣∣ ∑
n

τ
( 1
n + 1

n−1∑
k=m

Bm
k ∆m

k (x)yn

)∣∣∣ ≤ τ
[( ∞∑

k=m

(k + 1)−1
∣∣Bm

k ∆m
k (x)

∣∣2) 1
2

∑
n

yn

]
≤

∥∥( ∞∑
k=m

(k + 1)−1
∣∣Bm

k ∆m
k (x)

∣∣2) 1
2
∥∥

2

∥∥ ∑
n

yn

∥∥
2

≤ Cm ‖x‖2 ‖
∑

n

yn‖2.

Similarly, ∣∣∣ ∑
n

τ
( 1
n + 1

n∑
k=m

Bm+1
k ∆m+1

k (x)yn

)∣∣∣ ≤ Cm ‖x‖2

∥∥ ∑
n

yn

∥∥
2

.

Combining these inequalities with (5.4), we deduce∣∣∣ ∑
n

τ
( 1
n + 1

Bm+1
n ∆m

n (x)yn

)∣∣∣ ≤ Cm ‖x‖2

∥∥∑
n

yn

∥∥
2

,

whence ∥∥ sup
n

+
( 1
n + 1

Bm+1
n ∆m

n (x)
)∥∥

2
≤ Cm ‖x‖2 .

This is clearly equivalent to the desired inequality. �

Lemma 5.7. Let x = (xn) ∈ Lp(M; �∞) and (zn,k)n,k ⊂ C. Then∥∥ sup
n

+
∑

k

zn,kxk

∥∥
p
≤ sup

n

(∑
k

|zn,k|
) ∥∥ sup

k

+xk

∥∥
p

.

Proof. This is easy. Indeed, given a factorization of x as xk = aykb, we have∑
k

zn,kxk = a
(∑

k

zn,kyk

)
b .

Thus ∥∥ sup
n

+
∑

k

zn,kxk

∥∥
p

≤ ‖a‖2p ‖b‖2p sup
n

∥∥ ∑
k

zn,kyk

∥∥
∞

≤ ‖a‖2p ‖b‖2p sup
k

‖yk‖∞ sup
n

∑
k

|zn,k| .

This implies the desired inequality. �
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Lemma 5.8. Let α = β + i γ be such that β = −m + 1/2 with m ∈ N. Then∥∥ sup
n

+Mα
n (x)

∥∥
2
≤ Cm exp(5γ2) ‖x‖2, ∀ x ∈ L2(M) .

Proof. Given n ∈ N choose dn ∈ N such that n/2 + 1 ≤ dn < n/2 + 3. Then by
successive use of the Abel summation, we obtain

Sα
n =

n∑
k=0

Aα−1
n−k T k =

dn−1∑
k=0

Aα−1
n−k T k +

n∑
k=dn

Aα−1
n−k T k

=
dn−1∑
k=0

Aα−1
n−k T k + Aα

n−dn
T dn−1 +

n∑
k=dn

Aα
n−k ∆k

=
dn−1∑
k=0

Aα−1
n−k T k + Aα

n−dn
T dn−1 + Aα+1

n−dn
∆dn−1 +

n∑
k=dn

Aα+1
n−k ∆2

k

...

=
dn−1∑
k=0

Aα−1
n−k T k +

m∑
j=1

Aα+j−1
n−dn

∆j−1
dn−1 +

n∑
k=dn

Aα+m−1
n−k ∆m

k .

Therefore, by the triangle inequality and Lemma 5.7, we get∥∥ sup
n

+Mα
n (x)

∥∥
2
≤ I × II,

where

I =
m∑

j=0

∥∥ sup
n

+(n + 1)j∆j
n(x)

∥∥
2

and

II = sup
n

1
(n + 1)β

max

{
dn−1∑
k=0

|Aα−1
n−k|, max

1≤j≤m

|Aα+j−1
n−dn

|
dj−1

n

,

n∑
k=dn

|Aα+m−1
n−k |

(k + 1)m

}
.

By Lemma 5.6, I ≤ Cm ‖x‖2. On the other hand, by Lemma 5.3, i) (c1/2 ≤ 5 with
r = 1/2 there) we may estimate II by

Cm exp(5γ2) sup
n

1
(n + 1)β

max

{
dn−1∑
k=0

|Aβ−1
n−k|, max

1≤j≤m

|Aβ+j−1
n−dn

|
dj−1

n

,

n∑
k=dn

|Aβ+m−1
n−k |

(k + 1)m

}
.

Now using the following easily verified estimate

|Aδ
k| ≤ Cδ (k + 1)δ

for real δ (see also [Z, Vol. I, Chapter III.1]) and by the choice of dn, we get
n∑

k=dn

|Aβ+m−1
n−k |

(k + 1)m
≤ Cm

(n + 1)m

n∑
k=1

1√
k
≤ Cm (n + 1)β .

This gives the desired estimate on the last term in the brackets above. The other
two terms can be estimated similarly. Therefore, II ≤ Cm. Putting together all
preceding inequalities yields the lemma. �

Now we are in a position to prove Theorem 5.2.
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Proof of Theorem 5.2. Write α = β + iγ with β, γ ∈ R. Choose θ ∈ (0, 1), q ∈
(1,∞), m ∈ Z and b > max(β, 1) such that

1
p

=
1 − θ

2
+

θ

q
and β = (1 − θ)a + θ b with a = m +

1
2
.

Let x ∈ Lp(M) and y = (yn) be a finite sequence in Lp′(M) with ‖x‖p < 1 and
‖y‖Lp′ (M;�1) < 1. Define

f(z) = u
∣∣x∣∣ p(1−z)

2 + pz
q , z ∈ C,

where x = u|x| is the polar decomposition of x. On the other hand, by Proposition
2.5, there is a function g = (gn)n continuous on the strip {z ∈ C : 0 ≤ Re(z) ≤ 1}
and analytic in the interior such that g(θ) = y and

sup
t∈R

max
{
‖g(i t)‖L2(M;�1) , ‖g(1 + i t)‖Lq′(M;�1)

}
< 1.

Now define

F (z) = exp
(
δ(z2 − θ2))

∑
n

τ
[
M (1−z)a+zb+i γ

n (f(z)) gn(z)
]
,

where δ > 0 is a constant to be specified. F is a function analytic in the open strip
{z ∈ C : 0 < Re(z) < 1}. Applying Lemma 5.4 when m ≥ 1 and Lemma 5.8 when
m ≤ 0, we have

|F (it)| ≤ exp
(
δ(−t2 − θ2))

∥∥(
Ma+i(−ta+tb+γ)

n (f(it))
)
n

∥∥
L2(M;�∞)

∥∥g(i t)
∥∥

L2(M;�1)

≤ Cα exp
(
(−δ + cβ,b,γ)t2 − δθ2) ‖f(it)‖2 ≤ Cα exp

(
(−δ + cβ,b,γ)t2 − δθ2) .

Similarly, by Lemma 5.4,

|F (1 + it)| ≤ Cα,q exp
(
(−δ + c′β,b,γ)t2 + δ(1 − θ2)) .

Choosing δ bigger than max(cβ,b,γ , c′β,b,γ), we get

sup
t∈R

max
{
|F (i t)| , |F (1 + i t)|

}
≤ Cα,p.

Therefore, by the maximum principle, |F (θ)| ≤ Cp,β,b,γ . Namely,∣∣ ∑
n

τ
[
Mα

n (x) yn

]∣∣ ≤ Cα,p .

This yields (5.2), and thus the theorem is proved. �

We end this section with some direct consequences of Theorem 5.1.

Corollary 5.9. Let T be as in Theorem 5.1 and 2 < p < ∞. Then∥∥(
Tn(x)

)
n

∥∥
Lp(M;�c

∞)
≤

√
C ′

p ‖x‖p , ∀ x ∈ Lp(M).

Proof. Based on Theorem 5.1, this corollary is proved in the same way as Corollary
4.3. �

By iteration, we get the following.
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Corollary 5.10. Let T1, ..., Td satisfy (0.I)–(0.IV). Then for 1 < p < ∞,∥∥ sup+

n1,...,nd

Tnd

d · · · Tn1
1 (x)

∥∥
p
≤ (C ′

p)
d ‖x‖p , ∀ x ∈ Lp(M)

and for 2 < p < ∞,∥∥(
Tnd

d · · · Tn1
1 (x)

)
n1,...,nd

∥∥
Lp(M;�c

∞(Nd))
≤ (C ′

p)
d
2 ‖x‖p , ∀ x ∈ Lp(M).

By discretization, the previous maximal inequalities on contractions imply sim-
ilar ones on semigroups.

Corollary 5.11. i) Let (Tt)t≥0 be a semigroup verifying the conditions (0.I)–(0.IV).
Then for 1 < p < ∞,∥∥ sup+

t≥0
Tt(x)

∥∥
p
≤ C ′

p ‖x‖p , ∀ x ∈ Lp(M)

and for 2 < p < ∞,∥∥(
Tt(x)

)
t

∥∥
Lp(M;�c

∞(R+))
≤

√
C ′

p ‖x‖p , ∀ x ∈ Lp(M).

ii) A similar statement holds for d such semigroups.

6. Individual ergodic theorems

In this section we apply the maximal inequalities proved in the two previous
sections to study the pointwise ergodic convergence. To this end we first need an
appropriate analogue for the noncommutative setting of the usual almost every-
where convergence. This is the almost uniform convergence introduced by Lance
[L] (see also [Ja1]).

Definition 6.1. Let M be a von Neumann algebra equipped with a semifinite
normal faithful trace τ . Let xn, x ∈ L0(M).

i) (xn) is said to converge bilaterally almost uniformly (b.a.u. in short) to x
if for every ε > 0 there is a projection e ∈ M such that

τ (e⊥) < ε and lim
n→∞

‖e(xn − x)e‖∞ = 0.

ii) (xn) is said to converge almost uniformly (a.u. in short) to x if for every
ε > 0 there is a projection e ∈ M such that

τ (e⊥) < ε and lim
n→∞

‖(xn − x)e‖∞ = 0.

In the commutative case, both convergences in the definition above are equivalent
to the usual almost everywhere convergence by virtue of Egorov’s theorem. However
they are different in the noncommutative setting. Similarly, we introduce these
notions of convergence for functions with values in L0(M) and for nets in L0(M).

In order to deduce the individual ergodic theorems from the corresponding maxi-
mal ergodic theorems, it is convenient to use the subspace Lp(M; c0) of Lp(M; �∞).
Lp(M; c0) is defined as the space of all sequences (xn) ⊂ Lp(M) such that there
are a, b ∈ L2p(M) and (yn) ⊂ M verifying

xn = aynb and lim
n→∞

‖yn‖∞ = 0.

It is easy to check that Lp(M; c0) is a closed subspace of Lp(M; �∞) and∥∥ sup
n

+xn

∥∥
p

= inf
{
‖a‖2p sup

n≥0
‖yn‖∞ ‖b‖2p

}
,
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where the infimum runs over all factorizations of (xn) as above. We define similarly
the subspace Lp(M; cc

0) of Lp(M; �c
∞). Note that Lp(M; c0) (resp. Lp(M; cc

0)) is
just the closure in Lp(M; �∞) (resp. Lp(M; �c

∞)) of finite sequences in Lp(M) for
1 ≤ p < ∞. The definition of these spaces is readily extended to any index set
instead of N.

The following simple lemma from [DJ1] will be useful for our study of individual
ergodic theorems. We include a proof for completeness.

Lemma 6.2. i) If (xn) ∈ Lp(M; c0) with 1 ≤ p < ∞, then xn converges b.a.u. to
0.

ii) If 2 ≤ p < ∞ and (xn) ∈ Lp(M; cc
0), then xn converges a.u. to 0.

Proof. i) Let (xn) ∈ Lp(M; c0). Then there are a, b ∈ L2p(M) and yn ∈ M such
that

xn = aynb and ‖a‖2p < 1, ‖b‖2p < 1, lim
n→∞

‖yn‖∞ = 0.

We can clearly assume a, b ≥ 0. Let e′ be a spectral projection of a such that

τ (e′⊥) <
ε

2
and ‖e′a‖∞ ≤

(2
ε

) 1
2p .

Similarly, we find a spectral projection e′′ of b. Set e = e′ ∧ e′′. Then

τ (e⊥) ≤ τ (e′⊥) + τ (e′′⊥) < ε

and

‖exne‖∞ ≤ ‖ea‖∞ ‖yn‖∞ ‖be‖∞ ≤ ‖yn‖∞ ‖e′a‖∞ ‖be′′‖∞ ≤
(2
ε

) 1
p ‖yn‖∞ .

Thus limn ‖exne‖∞ = 0, and so xn → 0 b.a.u.
ii) The proof of this part is similar and left to the reader. �

Now let T be a linear map satisfying the conditions (0.I)–(0.III). Let (Mn)n

denote the ergodic averages of T . Recall that Fp denotes the fixed point subspace
of T in Lp(M) and F the projection from Lp(M) onto Fp (see section 1).

Theorem 6.3. Let T be a map on M satisfying (0.I)–(0.III). Let 1 < p < ∞ and
x ∈ Lp(M). Then

(
Mn(x) − F (x)

)
n
∈ Lp(M; c0) Moreover, if p > 2,

(
Mn(x) −

F (x)
)
n
∈ Lp(M; cc

0).

Proof. Let x ∈ Lp(M). Since (I − T )
(
L1(M)∩L∞(M)

)
is dense in F⊥

p , there are
xk ∈ (I − T )

(
L1(M) ∩ L∞(M)

)
such that

lim
k→∞

‖x − F (x) − xk‖p = 0.

By Theorem 4.1,∥∥(
Mn(x) − F (x) − Mn(xk)

)
n

∥∥
Lp(M;�∞)

≤ Cp ‖x − F (x) − xk‖p .

Thus
lim

k→∞

(
Mn(xk)

)
n

=
(
Mn(x) − F (x)

)
n

in Lp(M; �∞).

Since Lp(M; c0) is closed in Lp(M; �∞), it suffices to show
(
Mn(xk)

)
n
∈ Lp(M; c0)

for every k. To this end consider an arbitrary z ∈ (I − T )
(
L1(M) ∩ L∞(M)

)
. Let

y ∈ L1(M) ∩ L∞(M) be such that z = y − T (y). Then

Mn(z) =
1

n + 1
[
y − Tn+1(y)

]
.
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Since z ∈ Lq(M) for any 1 < q < ∞ we deduce from Theorem 4.1 that
(
Mn(z)

)
n

belongs to Lq(M; �∞). Choose a q ∈ (1, p). Then by Proposition 2.5, for any
m < n, ∥∥ sup+

m≤j≤n
Mj(z)

∥∥
p

≤ sup
m≤j≤n

∥∥Mj(z)
∥∥1− q

p

∞
∥∥ sup+

m≤j≤n
Mj(z)

∥∥ q
p

q

≤
[2‖y‖∞

m + 1
]1− q

p
∥∥ sup+

j≥1
Mj(z)

∥∥ q
p

q
.

Let �z(k) denote the finite sequence (M0(x), ..., Mk(x), 0, ...). The inequality above
shows that the sequence (�z(k))k≥0 converges to (Mn(z))n in Lp(M; �∞) as k → ∞.
Thus

(
Mn(z)

)
n
∈ Lp(M; c0), as wanted.

The second part can be similarly proved. Now we use Corollary 4.3 and the
analogue for the spaces Lp(M; cc

0) of Proposition 2.5. �

The following is an extension of Yeadon’s noncommutative individual ergodic
theorem [Ye] to all Lp(M) with 1 < p < ∞.

Corollary 6.4. Let T be a map satisfying the conditions (0.I)–(0.III). Let 1 < p <
∞ and x ∈ Lp(M). Then (Mn(x))n converges to F (x) b.a.u. for 1 < p ≤ 2 and
a.u. for 2 < p < ∞.

Proof. This is an immediate consequence of Lemma 6.2 and Theorem 6.3. �

Remark. Corollary 6.4 can also be proved by using Yeadon’s theorem. This is
however not the case for the multiple individual ergodic theorem below. We refer
to [Ska] for multiple ergodic theorems for commuting operators.

Remark 6.5. Again using Yeadon’s theorem, one can prove that the convergence in
Theorem 6.4 is a.u. for p = 2.

Proof. Fix x ∈ L2(M) and ε > 0. By decomposing x into its real and imaginary
parts, we can assume that x is selfadjoint. Let (εn) and (δn) be two sequences of
small positive numbers. Then for each m ≥ 1 there are wm ∈ L2(M) ∩ L∞(M)
and zm ∈ L2(M) such that

x = F (x) + ym + zm with ym = wm − T (wm) and ‖zm‖2 < δm.

Since x is selfadjoint, wm, ym and zm can be chosen to be selfadjoint too. We have

Mn(x) − F (x) = Mn(ym) + Mn(zm)

and
‖Mn(ym)‖∞ ≤ 2

n + 1
‖wm‖∞.

Now we apply Yeadon’s weak type (1,1) inequality (Lemma 1.2) to z2
m. Thus there

is a projection em such that

sup
n

∥∥emMn(z2
m)em

∥∥
∞ ≤ ε2

m and τ (e⊥m) < ε−2
m τ (z2

m) ≤ ε−2
m δ2

m .

By Kadison’s Cauchy-Schwarz inequality [Ka], we get∥∥Mn(zm)em

∥∥2

∞ ≤
∥∥emMn(z2

m)em

∥∥
∞ .

Thus
sup

n

∥∥Mn(zm)em

∥∥
∞ ≤ εm .
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Let e =
∧

m em. Then
τ (e⊥) ≤

∑
m≥1

ε−2
m δ2

m < ε

provided εm and δm are appropriately chosen. On the other hand, by the preceding
inequalities, we deduce∥∥e[Mn(x) − F (x)]e

∥∥
∞ ≤ 2

n + 1
‖wm‖∞ + ‖eMn(zm)e‖∞

=
2

n + 1
‖wm‖∞ + ‖e[emMn(zm)em]e‖∞ ≤ 2

n + 1
‖wm‖∞ + εm.

It then follows that

lim sup
n→∞

∥∥e[Mn(x) − F (x)]e
∥∥
∞ ≤ εm.

Since limm εm = 0, we get that limn→0 ‖e[Mn(x) − F (x)]e‖∞ = 0. Hence, Mn(x)
converges to F (x) b.a.u. �

We pass to the multiple version of Theorem 6.3 and Corollary 6.4. Let T1, ... , Td

be d maps satisfying (0.I)–(0.III). As before, set

Mn1,... ,nd
=

[ d∏
j=1

1
nj + 1

] nd∑
kd=0

· · ·
n1∑

k1=0

T kd

d · · · T k1
1 .

Let Fj be the projection onto the fixed point subspace of Tj .

Theorem 6.6. Let T1, ... , Td be d maps satisfying (0.I)–(0.III). Let 1 < p < ∞ and
x ∈ Lp(M). Then(

Mn1, ..., nd
(x) − Fd · · · F1(x)

)
n1, ..., nd≥1

∈ Lp(M; c0(Nd))

and if p > 2,(
Mn1, ..., nd

(x) − Fd · · · F1(x)
)
n1, ..., nd≥1

∈ Lp(M; cc
0(N

d)).

Consequently, Mn1,... ,nd
(x) converges b.a.u. to Fd · · · F1(x) as n1, ..., nd tend to

∞. Moreover, the convergence is a.u. in the case of p > 2.

Proof. This proof is similar to that of Theorem 6.3, modulo an iteration argument.
We consider only the typical case d = 2. Note that

Mn1,n2 = Mn2(T2)Mn1(T1).

Fix x ∈ Lp(M) and decompose x as x = F1(x) + yk + uk with

yk ∈ (I − T1)
(
L1(M) ∩ L∞(M)

)
, uk ∈ Lp(M), ‖uk‖p ≤ 1

k
.

Similarly, we decompose F1(x) with respect to T2: F1(x) = F2(F1(x)) + zk + vk

with
zk ∈ (I − T2)

(
(L1(M) ∩ L∞(M)

)
, vk ∈ Lp(M), ‖vk‖p ≤ 1

k
.

Applying successively Mn1(T1) to x and Mn2(T2) to F1(x), we get

Mn1,n2(x) − F2F1(x) = Mn1,n2(yk) + Mn1,n2(uk) + Mn2(T2)(zk) + Mn2(T2)(vk) .

By Corollary 4.4,∥∥ sup+

n1,n2

Mn1,n2(uk)
∥∥

p
≤ C2

p ‖uk‖p ≤
C2

p

k
→ 0 as k → ∞.
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Similarly,
lim

k→∞

∥∥ sup
n2

+Mn2(T2)(vk)
∥∥

p
= 0.

Therefore, as in the proof of Theorem 6.3, we need only to show(
Mn1,n2(yk)

)
n1,n2≥1

∈ Lp(M; c0(N2)) and
(
Mn2(zk)

)
n2≥1

∈ Lp(M; c0).

Theorem 6.3 implies the latter. The former is proved by the arguments in the proof
of Theorem 6.3. Thus the first part of the theorem is proved. The second part for
p > 2 is left to the reader.

Then applying Lemma 6.2 to multiple sequences, we deduce the announced point-
wise multiple ergodic convergence. �

We have the following stronger convergence result for symmetric T .

Theorem 6.7. Let T be a map satisfying (0.I)–(0.IV). Assume further that T
is positive as an operator on L2(M). Let 1 < p < ∞ and x ∈ Lp(M). Then
(Tn(x) − F (x))n belongs to Lp(M; c0) and to Lp(M; cc

0) if additionally p > 2.
Consequently, Tn(x) converges to F (x) b.a.u. for 1 < p ≤ 2 and a.u. for 2 < p <
∞.

Proof. Let us first treat the case p = 2. Write the spectral decomposition of T :

T =
∫ 1

0

λ d eλ .

Note that for any x ∈ (I − T )(L2(M)),

lim
λ→1

eλ(x) = x in L2(M).

Given x ∈ L2(M) choose xk ∈ (I −T )(L2(M)) such that lim ‖x−F (x)−xk‖2 = 0.
Then limλ→1 eλ(xk) = xk. Thus replacing xk by eλk

(xk) with an appropriate λk ∈
(0, 1), we can assume that xk = eλk

(yk) for some yk ∈ L2(M). Then

Tn(xk) =
∫ λk

0

λn d eλ(yk) , whence ‖Tn(xk)‖2 ≤ λn
k ‖yk‖2 .

It then follows that
(
Tn(xk)

)
n
∈ L2(M; c0) for every k, and so by Theorem 5.1,(

Tn(x) − F (x)
)
n
∈ L2(M; c0).

To treat the general case we first claim that

lim
n

‖Tn(x) − F (x)‖p = 0, ∀ x ∈ Lp(M).

Indeed, the preceding argument shows that this is true for p = 2. Now let 2 < p < ∞
and x ∈ L1(M) ∩M. By interpolation,

‖Tn(x) − F (x)‖p ≤ ‖Tn(x) − F (x)‖1− 2
p

∞ ‖Tn(x) − F (x)‖
2
p

2 ,

whence limn ‖Tn(x) − F (x)‖p = 0. Then our claim in the case p > 2 follows from
the density of L1(M) ∩M in Lp(M). The case p < 2 is proved similarly.

Now we can easily finish the proof of the theorem. Let x ∈ Lp(M). Fix k ∈ N.
Then Theorem 5.1 and the claim above imply

lim
k→∞

∥∥(
Tn

(
T k(x) − F (x)

))
n

∥∥
Lp(M;�∞)

= 0.
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Note that Tn
(
T k(x)−F (x)

)
= Tn+k(x)−F (x), and so the sequence

(
Tn

(
T k(x)−

F (x)
))

n≥0
can be considered as the rest of

(
Tn(x) − F (x)

)
n≥0

starting from the
k-th coordinate. It follows that

(
Tn(x) − F (x)

)
n≥0

∈ Lp(M; c0).
In a similar way, using Corollary 5.9, we show that

(
Tn(x)−F (x)

)
n
∈ Lp(M; cc

0)
for any x ∈ Lp(M) with p > 2. �

Remark. If we remove the additional assumption that T is a positive operator on
L2(M) in Theorem 6.7, then for any x ∈ Lp(M) the two subsequences (T 2n(x))n

and (T 2n+1(x))n still converge b.a.u.; however, their limits are not equal in general.
We end this section with the pointwise ergodic theorems for semigroups. Let

(Tt)t≥0 be a semigroup satisfying (0.I)–(0.III). We denote again by F the projection
from Lp(M) onto the fixed point subspace of (Tt)t≥0.

Theorem 6.8. Let (Tt)t≥0 be a semigroup with (0.I)–(0.III). Let (Mt)t>0 denote
the ergodic averages of (Tt)t≥0. Let 1 < p < ∞ and x ∈ Lp(M).

i) Then
a) Mt(x) converges to F (x) b.a.u. for 1 < p < 2 and a.u. for 2 ≤ p < ∞

when t → ∞.
b) Mt(x) converges to x b.a.u. for 1 < p < 2 and a.u. for 2 ≤ p < ∞

when t → 0.
ii) Assume in addition that (Tt)t≥0 satisfies (0.IV). Then

a) Tt(x) converges to F (x) b.a.u. for 1 < p ≤ 2 and a.u. for 2 < p < ∞
when t → ∞.

b) Tt(x) converges to x b.a.u. for 1 < p ≤ 2 and a.u. for 2 < p < ∞
when t → 0.

Proof. The two statements a) can be proved similarly as in the discrete case, using
Theorem 4.5. The main step here is to obtain the semigroup analogue of Theorem
6.3 as t → ∞, namely, to show that the family

(
Mt(x) − F (x)

)
t≥1

belongs to
Lp(M; c0([1,∞))) or Lp(M; cc

0([1,∞))). Note however that the a.u. convergence
for p = 2 in the first statement a) is shown similarly as Remark 6.5, using now
Remark 4.7. We leave this part of the proof to the reader and will show the two
statements b). (The first of them is the noncommutative analogue of the classical
Wiener local pointwise ergodic theorem.)

Let us first consider i), b). Let x ∈ Lp(M). By Lemma 6.2, it suffices to prove
that

(
Mt(x)−x

)
0<t≤1

belongs to Lp(M; c0((0, 1])) (with respect to t → 0). By the
mean ergodic theorem, we have Mt(x) → x when t → 0. Thus by a limit argument
as in the proof of Theorem 6.3, we may assume x = Mt0(y) for some 0 < t0 < 1
and y ∈ Lp(M). On the other hand, by the density of L1(M) ∩M in Lp(M), we
can further assume that y ∈ L1(M) ∩M. Let 0 < s ≤ t < t0. Then

Ts(x) − x =
1
t0

[ ∫ t0+s

t0

Tu(y)du −
∫ s

0

Tu(y)du
]
.

It then follows that

‖Ts(x) − x‖∞ ≤ 2s‖y‖∞
t0

and so

‖Mt(x) − x‖∞ ≤ 2t‖y‖∞
t0

→ 0 as t → 0.
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Thus by the interpolation argument used in the proof of Theorem 6.3, we deduce
that the family

(
Mt(x)−x

)
0<t≤1

belongs to Lp(M; c0((0, 1])). This proves the first
part of the statement i), b).

The second part for p > 2 can be shown in the same way. The case p = 2 is
dealt with similarly to Remark 6.5 by virtue of Remark 4.7.

ii), b) is proved similarly by using Corollary 5.11 and Lemma 6.2. Indeed, for
x = Mt0(y) as above, we have already proved

lim
t→0

‖Tt(x) − x‖∞ = 0.

Therefore,
(
Mt(x)− x

)
0<t≤1

∈ Lp(M; c0((0, 1])). Thus the proof of the theorem is
finished. �

Remarks. i) Both statements in Part i) of Theorem 6.8 also hold for p = 1 because
of Remark 4.7. On the other hand, both Theorem 6.7 and Theorem 6.8 admit
multiple versions, similar to Theorem 6.6.

ii) Using Corollary 4.6, one sees that the ergodic averages Mt in Theorem 6.8, i)
can be replaced by Pt, where (Pt) is a semigroup subordinate to (Tt). This is also
true for p = 1.

7. The nontracial case

So far we have restricted our attention to the semifinite case only. In this section
we will extend the previous results to arbitrary von Neumann algebras. Despite
the obvious similarity between the statements in the semifinite and the nontracial
cases, we want to point out that the situation for type III von Neumann algebras is
more complicated. This is due to the fact that for a state ϕ the equality ϕ(e∨f) ≤
ϕ(e)+ϕ(f) is no longer valid, and therefore many (Egorov type) arguments from the
previous section do not apply in this general setting. Our tool for maximal ergodic
inequalities in Haagerup noncommutative Lp-spaces is an important unpublished
theorem due to Haagerup, which consists in reducing the general case to the tracial
one. For clarity, we divide this section into several subsections.

7.1. Haagerup noncommutative Lp-spaces. The general noncommutative Lp-
spaces used below will be those constructed by Haagerup [H2]. Our reference is
[Te]. Throughout this section M will be a von Neumann algebra equipped with
a distinguished normal faithful state ϕ, unless explicitly stated otherwise. Lp(M)
denotes the associated noncommutative Lp-space (0 < p ≤ ∞). Recall that L∞(M)
is just M itself and L1(M) is the predual of M. The duality between M and L1(M)
is realized via the distinguished tracial functional tr on L1(M):

〈x, y〉 = tr(xy), y ∈ L1(M), x ∈ M.

As a normal positive functional on M, ϕ corresponds to a positive element in
L1(M). In the sequel this element will always be denoted by D, called the density
of ϕ in L1(M). Then ϕ can be recovered from D through the preceding duality:

ϕ(x) = tr(xD) = tr(Dx), x ∈ M.

We will often use the density of D
1−θ

p MD
θ
p in Lp(M) for any p ∈ (0,∞) and

0 ≤ θ ≤ 1. Moreover, D
1−θ

p MaD
θ
p is also dense in Lp(M), where Ma is the family

of all elements in M analytic with respect to the modular group σϕ
t of ϕ (see [JX2,

Lemma 1.1]).
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An important link between the spaces Lp(M) is the following external product.
Let 1

r = 1
p + 1

q and x ∈ Lp(M), y ∈ Lq(M). Then xy ∈ Lr(M) and

‖xy‖r ≤ ‖x‖p ‖y‖q .

Namely, the usual Hölder inequality extends to Haagerup Lp-spaces too. In partic-
ular, the dual space of Lp(M) is Lp′(M) for 1 ≤ p < ∞, and we have

tr(xy) = tr(yx), x ∈ Lp(M), y ∈ Lp′(M).

The definition of all vector-valued Lp-spaces extends verbatim to the present
setting. These include Lp(M; �∞), Lp(M; �c

∞), Lp(M; c0) and Lp(M; cc
0). For

instance, Lp(M; �∞) consists of all sequences x = (xn) in Lp(M) which admit a
factorization of the following type: there are a, b ∈ L2p(M) and a bounded sequence
(yn) ⊂ M such that xn = aynb for all n. The norm of x is then defined as

‖x‖Lp(M;�∞) = inf
{
‖a‖2p sup

n
‖yn‖∞ ‖b‖2p

}
,

where the infimum runs over all factorizations as above. We adopt the conven-
tion introduced in section 2 and denote again this norm by

∥∥ supn
+xn

∥∥
p
. Note

that Lp(M; c0) (resp. Lp(M; cc
0)) is again a closed subspace of Lp(M; �∞) (resp.

Lp(M; �c
∞)). Similarly, given an index set I we define the analogues of these spaces

for families indexed by I.
All properties in section 2 continue to hold in the present setting. However, for

an inclusion Lp(N ) ⊂ Lp(M) we will now require the existence of a normal state
preserving conditional expectation from M onto N . Under this hypothesis Remark
2.3 still holds. Also note that for the interpolation result in Proposition 2.5 we use
Kosaki’s interpolation theorem [Ko].

7.2. An extension result. Let T be a map on M. We will assume that T satisfies
conditions similar to (0.I)–(0.IV). More precisely, we will consider the following
properties of T :

(7.I) T is a contraction on M;
(7.II) T is completely positive;

(7.III) ϕ ◦ T ≤ ϕ;
(7.IV) T ◦ σϕ

t = σϕ
t ◦ T for all t ∈ R;

(7.V) T is symmetric with respect to ϕ; i.e., ϕ(T (y)∗x) = ϕ(y∗T (x)) for all
x, y ∈ M.

In order to consider maximal ergodic inequalities in Lp(M), we need first to
extend a map T with the properties above to a contraction on Lp(M) for all 1 ≤
p < ∞. The following is the nontracial analogue of Lemma 1.1.

Lemma 7.1. Let T be a map on M satisfying (7.I)–(7.III). Define

Tp : D
1
2p MD

1
2p → D

1
2p MD

1
2p ,

D
1
2p x D

1
2p �→ D

1
2p T (x) D

1
2p .

Then Tp extends to a positive contraction on Lp(M) for all 1 ≤ p < ∞. Moreover,
T is normal. If additionally T verifies (7.V), then the extension of T2 is selfadjoint
on L2(M).

In fact, the complete positivity assumption can be weakened to positivity. This
result comes from [JX5]. Its proof is much more involved than that of Lemma
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1.1. The main difficulty is to show the extension property of T1. This extension
is essentially a reformulation of Lemma 1.2 from [H1] into the present setting. We
refer to [JX5] for more details. The following observation is easily checked:

Remark. Let T and Tp be as in Lemma 7.1 (Tp also denoting the extension). Let
S = T ∗

1 . Then S satisfies (7.I)–(7.III) too. Moreover, S∗
p = Tp′ for all 1 ≤ p < ∞,

where Sp is the extension of S on Lp(M), guaranteed by Lemma 7.1. This shows,
in particular, that T is normal.

The extension in Lemma 7.1 is symmetric with respect to the injection of M into
Lp(M). We could also consider the left extension: xD1/p �→ T (x)D1/p (x ∈ M).
More generally, for any 0 ≤ θ ≤ 1 we can define

Tp,θ : D
1−θ

p MD
θ
p → D

1−θ
p MD

θ
p ,

D
1−θ

p x D
θ
p �→ D

1−θ
p T (x) D

θ
p .

Note that Tp,1/2 is exactly the Tp defined in Lemma 7.1. Assume in addition that
T satisfies (7.IV). Using the equality

D
1−θ

p Ma D
θ
p = Ma D

1
p ,

one easily checks that

Tp,θ

∣∣∣
Ma D

1
p

= Tp

∣∣∣
Ma D

1
p

.

Thus Tp,θ does not depend on θ (at least when restricted to analytic elements).
Consequently, Tp,θ extends to a contraction on Lp(M). Since we will use this
observation later, we formulate it explicitly.

Remark 7.2. Let T satisfy (7.I)–(7.IV). Then Tp,θ does not depend on θ ∈ [0, 1]
and extends to a positive contraction on Lp(M).

Convention. In the sequel, we will denote, by the same symbol T , all the maps
Tp and Tp,θ as well as their extensions to the Lp-spaces in Lemma 7.1 and Remark
7.2, whenever no confusion can occur.

Let T be a map on M with (7.I)–(7.III). We will consider again the ergodic
averages:

Mn ≡ Mn(T ) =
1

n + 1

n∑
k=0

T k .

All discussions in section 1 concerning the mean ergodic theorem are still valid now.
Thus T is ergodic on Lp(M) for all 1 ≤ p ≤ ∞ (relative to the w*-topology for
p = ∞). We still have the decomposition

Lp(M) = Fp(T ) ⊕Fp(T )⊥,

with Fp(T ) = {x ∈ Lp(M) : T (x) = x}. In the previous sections, we used several
times the fact that (I − T )(L1(M)∩M) is dense in Fp(T )⊥. Now this fact should
be changed to the following: D

1
2p (I −T )(M) D

1
2p is dense in Fp(T )⊥. If T further

satisfies (7.IV), this dense subspace can be replaced by D
1−θ

p (I − T )(Ma) D
θ
p for

any θ ∈ [0, 1], which is equal to (I −T )(Ma) D
1
p too. The easy verification of these

facts is left to the reader. As before in the tracial case, the projection from Lp(M)
onto Fp(T ) will be denoted by F for any 1 ≤ p ≤ ∞. Again F is normal as a map
on L∞(M).
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The discussion above is readily transferred to semigroups. Let (Tt) be a semi-
group of maps on M satisfying (7.I)–(7.III) (i.e., each Tt satisfying (7.I)–(7.III)).
Then (Tt) extends to a semigroup of positive contractions on Lp(M) for 1 ≤ p < ∞.
We will assume that (Tt) is w*-continuous and T0 is the identity. Then (Tt) is
strongly continuous on Lp(M) for every p < ∞. Again the fixed point projection
of (Tt) is denoted by F . Then the mean ergodic theorem asserts that Mt(x) con-
verges to F (x) as t → ∞ for all x ∈ Lp(M) (relative to the w*-topology for p = ∞),
where Mt denotes the ergodic averages of (Tt).

The following extends a well-known result in the commutative case to the present
situation.

Remark 7.3. Let T be a map on M verifying (7.I)–(7.III). Assume in addition that
ϕ ◦ T = ϕ. Then F∞(T ) is a von Neumann subalgebra of M, and F is the normal
conditional expectation from M onto F∞(T ) such that ϕ ◦ F = ϕ.

Proof. First note that under the assumptions above, both T and F are unital and F
preserves the state ϕ. Thus F is a normal unital completely positive projection from
M onto F∞(T ). Consequently, F∞(T ) contains the unit of M and is closed under
involution, and so F∞(T ) is a w*-closed operator system. Therefore, it remains to
show that F∞(T ) is closed under the product of M.

To that end we will use the following formula from [ChE] (formula (3.1) there),

(7.1) F (aF (x)) = F (ax) and F (F (x)a) = F (xa), ∀ a ∈ F∞(T ), x ∈ M.

Let us consider the pre-adjoint of F , F∗ : M∗ → M∗. We claim that

F∗(xϕ) = F (x)ϕ, ∀ x ∈ M.

Indeed, since ϕ ◦ F = ϕ, given y ∈ M, by (7.1) we have

F∗(xϕ)(y) = xϕ(F (y)) = ϕ(F (y)x) = ϕ[F (F (y)x)] = ϕ[F (F (y)F (x))]
= ϕ[F (yF (x))] = ϕ(yF (x)) = [F (x)ϕ](y).

Now let a, b ∈ F∞(T ). Then F∗(abϕ) = F (ab)ϕ. On the other hand, for any x ∈ M,

F∗(abϕ)(x) = ϕ(F (x)ab) = ϕ[F (F (x)ab)] = ϕ
[
F

(
F [F (x)a]b

)]
= ϕ[F (F (xa)b)] = ϕ[F (xab)] = ϕ(xab) = [abϕ](x).

Hence, F∗(abϕ) = abϕ. It thus follows that F (ab)ϕ = abϕ. Then the faithfulness
of ϕ implies that F (ab) = ab, and so F∞(T ) is stable under multiplication, as
desired. �

7.3. Maximal ergodic inequalities. The following is the extension of Theorems
4.1 and 5.1 to the nontracial case.

Theorem 7.4. i) Let T satisfy (7.I)–(7.IV). Let (Mn) denote the ergodic averages
of T . Then for any 1 < p < ∞,∥∥ sup

n

+Mn(x)
∥∥

p
≤ Cp ‖x‖p , x ∈ Lp(M).

ii) If T further satisfies (7.V), then∥∥ sup
n

+Tn(x)
∥∥

p
≤ C ′

p ‖x‖p , x ∈ Lp(M).

Here Cp and C ′
p are respectively the constants in (4.1) and (5.1).
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Remark. Compared with Theorems 4.1 and 5.1 in the tracial case, the assumption
in Theorem 7.4 is a little bit stronger, namely, the positivity of T in those theorems
is now reinforced to the complete positivity (7.II). It is likely that this is not really
needed.

As in the tracial case, Theorem 7.4 immediately yields the following two corol-
laries.

Corollary 7.5. Let T satisfy (7.I)–(7.IV) and 2 < p < ∞. Then∥∥(
Mn(x)

)
n≥0

∥∥
Lp(M;�c

∞)
≤

√
Cp/2 ‖x‖p , ∀ x ∈ Lp(M).

If additionally T has (7.V), then∥∥(
Tn(x)

)
n≥0

∥∥
Lp(M;�c

∞)
≤

√
C ′

p/2 ‖x‖p , ∀ x ∈ Lp(M).

Corollary 7.6. Let (Tt) be a w*-continuous semigroup of maps on M satisfying
(7.I)–(7.IV). Let

Mt =
1
t

∫ t

0

Ts ds, t > 0.

Then for any 1 < p < ∞,∥∥ sup
t

+Mt(x)
∥∥

p
≤ Cp ‖x‖p , x ∈ Lp(M)

and for p > 2,∥∥(
Mt(x)

)
t>0

∥∥
Lp(M;�c

∞(R+))
≤

√
Cp/2 ‖x‖p , ∀ x ∈ Lp(M).

If additionally each Tt satisfies (7.V), then∥∥ sup
t

+Tt(x)
∥∥

p
≤ C ′

p ‖x‖p , x ∈ Lp(M)

and for p > 2,∥∥(
Tt(x)

)
t>0

∥∥
Lp(M;�c

∞(R+))
≤

√
C ′

p/2 ‖x‖p , ∀ x ∈ Lp(M).

Although they are not stated here, all other inequalities in sections 4 and 5
continue to hold for Haagerup noncommutative Lp-spaces. We omit the details.
The rest of this subsection is devoted to the proof of Theorem 7.4. It relies in a
crucial way on Haagerup’s reduction theorem [H3]. We will need the precise form
of Haagerup’s construction that we recall very briefly below.

Let G denote the discrete subgroup
⋃

m≥1 2−mZ of R. We consider the crossed
product R = M�σϕ G. Here the modular automorphism group σϕ is also regarded
as an automorphic representation of G on M. As usual, M is viewed as a von
Neumann subalgebra of R. Let ϕ̂ denote the dual weight of ϕ. Since G is discrete, ϕ̂
is a normal faithful state on R and its restriction to M coincides with ϕ. Moreover,
there is a normal faithful conditional expectation Φ from R onto M such that

ϕ̂ ◦ Φ = ϕ̂ and σϕ̂
t ◦ Φ = Φ ◦ σϕ̂

t , t ∈ R.

Then Haagerup’s reduction theorem can be stated as follows.
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Theorem 7.7 (Haagerup). With the notation above, there is an increasing sequence
(Rm)m≥1 of von Neumann subalgebras of R satisfying the following properties:

i) each Rm is equipped with a normal faithful tracial state τm;
ii)

⋃
m≥1 Rm is w*-dense in R;

iii) there is a normal faithful conditional expectation Φm from R onto Rm such
that

ϕ̂ ◦ Φm = ϕ̂ and σϕ̂
t ◦ Φm = Φm ◦ σϕ̂

t , t ∈ R.

We refer to [H3] for the proof. [JX5] reproduces Haagerup’s proof and presents
several applications of Theorem 7.7.

In the situation above, Lp(M) and Lp(Rm) can be regarded naturally and iso-
metrically as subspaces of Lp(R). Moreover, the conditional expectation Φ (resp.
Φm) extends to a positive contractive projection from Lp(R) onto Lp(M) (resp.
Lp(Rm)) (see [JX2]; this is also a particular case of Lemma 7.1). On the other
hand,

⋃
m≥1 Lp(Rm) is dense in Lp(R) for p < ∞, and the sequence (Φm) is in-

creasing. Thus (Rm) gives rise to a martingale structure on R, and consequently,
given x ∈ Lp(R) with 1 ≤ p < ∞, Φm(x) converges to x in Lp(R) as m → ∞.

Let us also observe that by Remark 2.3 applied to Haagerup spaces, Lp(M; �∞)
and Lp(Rm; �∞) are isometrically subspaces of Lp(R; �∞).

For the proof of Theorem 7.4 we will further need the following result from [JX5].

Lemma 7.8. Let T be as in Theorem 7.4.
i) Then T has an extension T̂ to R which satisfies (7.I)–(7.IV) relative to

(R, ϕ̂). Moreover, if T verifies (7.V), so does T̂ relative to ϕ̂.
ii) T̂ (Rm) ⊂ Rm and τm ◦ T̂ ≤ τm for all m ≥ 1.

Now we are ready to show Theorem 7.4.

Proof of Theorem 7.4. Fix 1 < p < ∞ and x ∈ Lp(M). We consider x as an ele-

ment in Lp(R) and then apply the conditional expectation Φm to it: xm
def=Φm(x) ∈

Lp(Rm). Note that T̂
∣∣
Rm

satisfies the conditions (0.I)–(0.III) relative to τm. So

we can apply Theorem 4.1 to T̂ on Rm and get∥∥ sup
n

+Mn(T̂ )(xm)
∥∥

p
≤ Cp ‖x‖p , ∀ m ∈ N.

By the martingale convergence theorem recalled previously,

lim
m→∞

xm = x in Lp(R).

Consequently,
lim

m→∞
T̂ k(xm) = x in Lp(R), ∀ k ≥ 0.

On the other hand, it is clear that the norm of Lp(R; �n
∞) is equivalent to that of

�n
∞

(
Lp(R)

)
for each fixed n. We then deduce that

lim
m→∞

∥∥ sup+

1≤k≤n
Mk(T̂ )(xm)

∥∥
p

=
∥∥ sup+

1≤k≤n
|Mk(T̂ )(x)|

∥∥
p

.

However, since x ∈ Lp(M),

Mk(T̂ )(x) = Mk(T )(x).
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Therefore, we deduce∥∥ sup+

1≤k≤n
Mk(T )(x)

∥∥
p
≤ Cp ‖x‖p , ∀ n ∈ N.

Thus, by Proposition 2.1 and Remark 2.3, we have∥∥ sup
n

+Mn(T )(x)
∥∥

p
≤ Cp ‖x‖p .

This shows the first part of Theorem 7.4. The second part is proved similarly. �

7.4. Individual ergodic theorems. In this subsection we consider individual
ergodic theorems in Haagerup’s noncommutative Lp-spaces. As mentioned earlier,
the situation is more complicated than that in the tracial case. One of the reasons is
that the elements in Lp(M) are no longer closed densely defined operators affiliated
with M but affiliated with a larger von Neumann algebra, namely the crossed
product M �σϕ R. We first need to introduce an appropriate analogue of the
almost everywhere convergence for sequences in Lp(M). There are several such
generalizations. Here we adopt the almost sure convergence introduced by Jajte
[Ja2] (following ideas from [DJ2]). In the L∞-case, we continue to use Lance’s
almost uniform convergence.

Definition 7.9. i) Let xn, x ∈ M. xn is said to converge almost uniformly (a.u.
in short) to x if for every ε > 0 there is a projection e ∈ M such that

ϕ(e⊥) < ε and lim
n→∞

‖(xn − x)e‖∞ = 0.

ii) Let xn, x ∈ Lp(M) with p < ∞. The sequence (xn) is said to converge almost
surely (a.s. in short) to x if for every ε > 0 there is a projection e ∈ M and a
family (an,k) ⊂ M such that

ϕ(e⊥) < ε and xn − x =
∑
k≥1

an,k D
1
p , lim

n→∞

∥∥ ∑
k≥1

(an,k e)
∥∥
∞ = 0,

where the two series converge in norm in Lp(M) and M, respectively.
iii) Similarly, we define bilateral almost uniform (b.a.u.) convergence and bilat-

eral almost sure (b.a.s.) convergence. Note that for the latter we use the symmetric
injection of M into Lp(M) : a �→ D

1
2p a D

1
2p .

The following nontracial analogue of Lemma 6.2 is obtained in [DJ2]. For the
sake of completeness we provide a simplified proof.

Lemma 7.10. i) If (xn) ∈ Lp(M; c0) with 1 ≤ p < ∞, then xn converges b.a.s. to
0.

ii) If 2 ≤ p < ∞ and (xn) ∈ Lp(M; cc
0), then xn converges a.s. to 0.

Proof. Suppose (xn) ∈ Lp(M; c0). Then there are a, b ∈ L2p(M) and yn ∈ M such
that

xn = aynb and ‖a‖2p < 1, ‖b‖2p < 1, lim
n→∞

‖yn‖∞ = 0.

By the density of D
1
2pM in L2p(M), there are ak ∈ M such that

a =
∑
k≥1

D
1
2p ak and

∥∥D
1
2p ak

∥∥
2p

< 2−k .
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Similarly,
b =

∑
k≥1

bkD
1
2p and

∥∥bkD
1
2p

∥∥
2p

< 2−k .

Thus
xn =

∑
j,k

D
1
2p ajynbkD

1
2p converges in Lp(M).

By the Hölder inequality,

ϕ(aka∗
k) =

∥∥D
1
2 aka∗

kD
1
2
∥∥

1
≤

∥∥D
1
2p aka∗

kD
1
2p

∥∥
p

< 2−2k .

In the same way, ϕ(b∗kbk) < 2−2k. Now let ε > 0. Then by [Ja1, Corollary 2.2.13],
there is a projection e ∈ M such that

ϕ(e⊥) < ε and max
{
‖eaka∗

ke‖∞, ‖eb∗kbke‖∞
}
≤ 8 ε−1 2−k , ∀ k ≥ 1.

Therefore, ∑
j,k≥1

‖eajynbke‖∞ ≤ 8 ε−1 ‖yn‖∞
[ ∑

k

2−k/2
]2

,

whence the double series
∑

j,k(eajynbke) converges absolutely in M and

lim
n→∞

∑
j,k

eajynbke = 0.

Hence xn → 0 b.a.s. The second part is proved similarly. �
Theorem 7.11. i) Let T be a map on M satisfying (7.I)–(7.IV). Then

(
Mn(x) −

F (x)
)
n
∈ Lp(M; c0) for 1 < p < ∞ and x ∈ Lp(M). More generally, let T1, ..., Td

be d such maps and let

Mn1, ..., nd
= Mnd

(Td) · · · Mn1(T1) .

Let Fk be the projection on the fixed point subspace of Tk. Then(
Mn1, ..., nd

(x) − Fd · · · F1(x)
)
n1, ..., nd≥1

∈ Lp(M; c0(Nd)),

for all x ∈ Lp(M), 1 < p < ∞ and(
Mn1, ..., nd

(x) − Fd · · · F1(x)
)
n1, ..., nd≥1

∈ Lp(M; cc
0(N

d)),

for all x ∈ Lp(M), 2 < p < ∞.
ii) If the Tk further verify (7.V) and are positive operators on L2(M), then in

the statement above the iterated ergodic averages Mn1, ..., nd
can be replaced by the

iterated powers Tnd

d · · ·Tn1
1 .

Proof. i) Let 1 < p < ∞ and x ∈ Lp(M). By the discussion following Remark 7.2,
we can find yk ∈ M and

xk = D
1
2p

(
yk − T (yk)

)
D

1
2p

such that

lim
k→∞

‖x − F (x) − xk‖p = 0 .

We have
Mn(xk) =

1
n + 1

D
1
2p

[
yk − Tn+1(yk)

]
D

1
2p

and so
(
Mn(xk)

)
n
∈ Lp(M; c0). Then as in the proof of Theorem 6.3, we deduce

that
(
Mn(x) − F (x)

)
n
∈ Lp(M; c0).
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Now assume 2 < p < ∞. Then by Remark 7.2, the xk above can be defined by

xk = (yk − T (yk))D
1
p with yk ∈ Ma .

Then
(
Mn(xk)

)
n
∈ Lp(M; cc

0), and so
(
Mn(x) − F (x)

)
n
∈ Lp(M; cc

0).
Iterating the arguments above as in the proof of Theorem 6.6 and using the

Haagerup space analogue of Corollary 4.4, we obtain the result for the multiple
ergodic averages.

ii) In the case of one contraction, this part is proved in the same way as Theorem
6.7. The general case is dealt with by iteration. We omit the details. �

Corollary 7.12. With the assumption and notation in Theorem 7.11 i), for any
1 < p < ∞ and x ∈ Lp(M),

lim
n1→∞, ..., nd→∞

Mn1, ..., nd
(x) = Fd · · · F1(x) b.a.s.;

if p > 2, the convergence above is a.s. With the same assumption as in Theorem
7.11 ii), we have

lim
n1→∞, ..., nd→∞

Tnd

d · · · Tn1
1 (x) = Fd · · · F1(x) b.a.s.

for x ∈ Lp(M) and 1 < p < ∞. Again the convergence is a.s. for p > 2.

Remarks. i) Combining the preceding arguments with those in the tracial case in
section 6, we easily show that Theorem 6.8 continues to hold in the present setting
of Haagerup Lp-spaces with a.s. convergence in place of a.u. convergence, as in
Corollary 7.12 above.

ii) Using Goldstein’s maximal weak type (1, 1) inequality ([Go]; see also [Ja2,
Theorem 2.2.12]), we can show that the first part of Corollary 7.12 remains true
for p = 1 and d = 1 (i.e., for only one contraction).

iii) Jajte [Ja2] states a multiple individual ergodic theorem in L2(M) (Theorem
2.3.4 there), which corresponds to the first part of Corollary 7.12 in the case of
p = 2. His proof uses in an essential way his previous Theorem 2.2.4. Based upon
an iteration using Goldstein’s maximal weak type (1, 1) inequality, the proof of the
latter theorem seems, however, to present a serious gap.

Corollary 7.12 excludes the case p = ∞, so does not allow us to recover all
previous results by Lance [L], Kümmerer [Kü], etc. This situation can be easily
remedied. This is done by virtue of the following simple lemma (see also [DJ2]):

Lemma 7.13. Let 1 ≤ p < ∞ and xn ∈ M. Then

(D
1
2p xnD

1
2p )n ∈ Lp(M; c0) =⇒ xn → 0 b.a.u.,

(xnD
1
2p )n ∈ Lp(M; cc

0) =⇒ xn → 0 a.u.

Proof. Assume (D
1
2p xnD

1
2p )n ∈ Lp(M; c0). Choose a, b, yn, ak and bk exactly as

in the proof of Lemma 7.10 (with D
1
2p xnD

1
2p = aynb). Next for each n choose an

integer kn such that

∥∥D
1
2p xnD

1
2p −

kn∑
j,k=1

D
1
2p ajynbkD

1
2p

∥∥
p

< 4−n .
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Set

zn = xn −
kn∑

j,k=1

ajynbk.

Then ∥∥D
1
2 znD

1
2
∥∥

1
≤

∥∥D
1
2p znD

1
2p

∥∥
p

< 4−n .

Let un and vn be respectively the real and imaginary parts of zn. Then the in-
equality above holds with un and vn instead of zn. Now we apply [H1, Lemma 1.2]
already quoted previously and reformulated in our setting as in [JX5]. We then
find u′

n, u′′
n ∈ M+ such that un = u′

n − u′′
n and∥∥D

1
2 unD

1
2
∥∥

1
=

∥∥D
1
2 u′

nD
1
2
∥∥

1
+

∥∥D
1
2 u′′

nD
1
2
∥∥

1
= ϕ(u′

n) + ϕ(u′′
n).

Similarly, we have v′n and v′′n for vn. Thus

ϕ(u′
n) + ϕ(u′′

n) < 4−n , ϕ(v′n) + ϕ(v′′n) < 4−n .

Now given ε > 0, applying [Ja1, Corollary 2.2.13] to the family{
ana∗

n, b∗nbn, u′
n, u′′

n, v′n, v′′n : n ∈ N
}
,

we get a projection e ∈ M such that ϕ(e⊥) < ε and

max
{
‖eana∗

ne‖∞, ‖eb∗nbne‖∞, ‖eu′
ne‖∞, ‖eu′′

ne‖∞, ‖ev′ne‖∞, ‖ev′′ne‖∞
}

< 16 ε−1 2−n

for all n ∈ N. Therefore,

‖exne‖∞ ≤ ‖ezne‖∞ +
∥∥ kn∑

j,k=1

eajynbke
∥∥
∞

≤ ‖e(u′
n − u′′

n)e‖∞ + ‖e(v′n − v′′n)e‖∞ +
kn∑

j,k=1

‖eajynbke‖∞

≤ 64 ε−1 2−n + 16 ε−1 ‖yn‖∞
[ ∑

k≥1

2−k/2
]2 → 0 as n → ∞.

Thus xn → 0 b.a.u. The proof of the second part on the a.u. convergence is
similar and even easier (without appealing to Haagerup’s Lemma). Thus we omit
the details. �

The first part of the following is well known (cf., e.g., [Ja1]).

Corollary 7.14. Let T1, ..., Td satisfy (7.I)–(7.IV) and let

Mn1, ..., nd
= Mnd

(Td) · · · Mn1(T1) .

Then for any x ∈ M,

lim
n1→∞, ..., nd→∞

Mn1, ..., nd
(x) = Fd · · · F1(x) a.u.

If T1, ..., Td additionally have (7.V), then

lim
n1→∞, ..., nd→∞

Tnd

d · · · Tn1
1 (x) = Fd · · · F1(x) a.u.

Proof. This immediately follows from Theorem 7.11 and Lemma 7.13. �
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Remark. In the case of d = 1, the first part of Corollary 7.14 permits us to recover
Lance’s theorem. However, compared with Kümmerer’s theorem, our hypothesis is
stronger since Kümmerer assumed only that T is a positive contraction verifying
(7.III). We do not know whether all ergodic theorems in this section hold for such
contractions or not. In particular, is Theorem 7.4 true for a positive contraction T
satisfying (7.III) (and (7.V))?

Remark. As in the tracial case, all the preceding individual ergodic theorems admit
semigroup analogues.

8. Examples

We will give some natural examples to which the results in the previous sections
can be applied.

8.1. Modular groups. The very first examples are modular automorphism
groups. Let ϕ be a normal faithful state on a von Neumann algebra M. Let
σϕ

t be the modular group of ϕ. Then Tt = σϕ
t satisfies the properties (7.I)–(7.IV).

On the other hand, (7.V) is equivalent to ϕ(σϕ
t (y)x) = ϕ(yσϕ

−t(x)) for all x, y ∈ M
and t ∈ R. Thus applying Corollary 7.6, we get that for 1 < p < ∞,∥∥ sup

t

+ 1
t

∫ t

0

σϕ
s (x)ds

∥∥
p
≤ Cp ‖x‖p , ∀ x ∈ Lp(M).

Note that the fixed point subspace F∞ of (σϕ
t ) coincides with the centralizer Mϕ of

ϕ. Consequently, Fp coincides with Lp(Mϕ), considered as a subspace of Lp(M).
Thus applying the results in subsection 7.4, we deduce that the ergodic averages

1
t

∫ t

0

σϕ
s (x)ds

converge b.a.u. to x (resp. F (x)) as t → 0 (resp. t → ∞) for all x ∈ Lp(M)
and 1 ≤ p ≤ ∞. Moreover, the convergence is a.u. in the case of p ≥ 2. Let us
consider a state ϕ(x) = λx11 + µx22 on the matrix algebra M2 of 2 × 2 matrices,
where 0 < λ �= µ < 1. Then we see that σϕ

t (e12) = eit(λ−µ) e12 is not convergent
for t → ∞. At least in this case it is obvious that the symmetry condition (7.V) is
really necessary.

8.2. Semi-noncommutative case. Let (Ω,F , µ) be a σ-finite measure space and
N be a von Neumann algebra equipped with a semifinite normal faithful trace ν. We
consider the von Neumann algebra tensor product (M, τ ) = (L∞(Ω), µ)⊗̄(N , ν).
(Note here that µ is understood as a trace on Lp(Ω) via integration.) Given p < ∞
the corresponding noncommutative Lp(M) is just Lp(Ω; Lp(N )), the usual Lp-
space of strongly measurable p-integrable functions on Ω with values in Lp(N ).
Now let (St) be a semigroup on Lp(Ω) satisfying the conditions (0.I)–(0.III) (with
M = L∞(Ω) there). Then Tt = I ⊗ St is a semigroup on Lp(M) verifying the
same conditions. Moreover, if St is symmetric, so is Tt. Thus we can transfer
all classical semigroups to this semi-noncommutative setting and obtain the cor-
responding ergodic theorems. In particular, applying this procedure to the usual
Poisson semigroup (Pt) on the unit circle T or on Rn, by Corollary 4.6, we get∥∥ sup

t

+I ⊗ Pt(x)
∥∥

p
≤ Cp ‖x‖p, x ∈ Lp(Rn; Lp(N )), 1 < p < ∞.
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For p = 1 we also have a weak type inequality (see Remark 4.7). These results
were also proved by Mei [M] using a different method. Moreover, he obtained the
nontangential analogue (for the upper half-plane) of the inequality above. Note
that in this discussion, the usual Poisson semigroup on Rn can be replaced by the
Poisson semigroup subordinate to the Ornstein-Uhlenbeck semigroup on Rn.

The situation above readily extends to the nontracial case. Assume that µ is a
probability measure and N a von Neumann algebra equipped with a normal faithful
state ψ. Then the tensor product M is equipped with the tensor state ϕ = µ ⊗ ψ.
This allows us to apply the ergodic results in section 7 to this semi-noncommutative
setting.

8.3. Schur multipliers. Let M = B(�2). Then the associated noncommutative
Lp-spaces are the Schatten classes Sp. The elements in Sp are represented as infinite
matrices. Let φ be a function on N × N. Recall that φ is a Schur multiplier on Sp

if the map Mφ : x �→ (φjkxjk), defined for finite matrices x, extends to a bounded
map on Sp (which is still denoted by Mφ).

Let us consider a function f : N → H, where H is a real Hilbert space, and the
associated kernel

K(j, k) = ‖f(j) − f(k)‖, j, k ∈ N.

We are interested in the semigroups (Tt) and (Pt) of Schur multipliers, which are
determined by

Tt(ejk) = e−tK(j,k)2ejk and Pt(ejk) = e−tK(j,k)ejk ,

where the ejk’s stand for the canonical matrix units of B(�2). It is well known that
these are completely positive contractive semigroups on B(�2). Indeed, let µ be a
Gaussian measure on H, i.e., a probability space (Ω, µ) together with a measurable
function w : Ω → H such that

exp
(
− ‖h‖2

)
=

∫
Ω

exp
(
i〈h, w(ω)〉

)
dµ(ω) , h ∈ H.

Given ω ∈ Ω, t > 0 we consider the diagonal matrix Dt(ω) with the diagonal matrix
with entries exp

(
i
√

t 〈f(j), w(ω)〉
)
, j ∈ N. Then it is easy to see that

(8.1) Tt(x) =
∫

ΩDt(ω)xDt(ω)∗ dµ(ω) , x ∈ B(�2).

Since Dt(ω) is unitary, this formula shows that Tt is a completely positive contrac-
tion on B(�2). In fact, (8.1) is the Stinespring representation of Tt. The semigroup
(Tt) satisfies all properties (0.I)–(0.IV) with M = B(�2) and τ being the usual
trace on B(�2). Since (Pt) is the Poisson semigroup subordinate to (Tt) via (4.2),
(Pt) has the same properties. Thus these semigroups extend to symmetric positive
contractive semigroups on Sp for 1 ≤ p < ∞.

Thus we have the maximal inequalities in Theorem 4.1 and Theorem 5.1 for (Tt)
as well as (4.4) for (Pt). Note that in this situation the a.u. convergence reduces
to the uniform convergence in B(�2).

8.4. Hamiltonians. In this subsection, M is semifinite and equipped with a nor-
mal faithful semifinite trace τ . Let L ∈ L0(M) be selfadjoint. We consider the
Hamiltonian semigroup given by the generator adL:

ad L(x) = Lx − xL, x ∈ M.
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Note that
(ad L)2(x) = L2x + xL2 − 2LxL.

Set
Tt = e−t(ad L)2 and Pt = e−t |ad L| .

It is again well known that these are completely positive contractive semigroups
on M (see [Par, Example 30.1]). Since (Pt) is the Poisson semigroup subordi-
nate to (Tt), it suffices to show this for (Tt). In fact, (Tt) admits a Stinespring
representation similar to (8.1):

(8.2) Tt(x) = E
[
ei

√
t gLxe−i

√
t gL

]
, x ∈ M,

where g is a Gaussian variable with mean zero and variance
√

2 and E denotes the
expectation with respect to g. To check this, let us first write the spectral resolution
of L:

L =
∫ ∞

−∞
λ deλ.

Let R > 0 and e be the spectral projection of L corresponding to the interval
[−R, R]. Consider x ∈ M such that x = exe. Then

(8.3) ‖LjxLk‖ ≤ Rj+k‖x‖, ∀ j, k ≥ 0.

A simple induction shows that

(adL)n(x) = (−1)n
n∑

k=0

(−1)kCk
n LkxLn−k .

Now consider the formal power series representation

E
[
ei

√
t gLxe−i

√
t gL

]
= E

[ ∞∑
j,k=0

(i
√

t)j(−i
√

t)k

j! k!
gj+kLjxLk

]
=

∞∑
n=0

(−1)ntn

n!

∑
j+k=2n

(2n)!
j! k!

(−1)kLjxLk

=
∞∑

n=0

(−1)ntn

n!
(adL)2n(x) = e−t(ad L)2(x).

Note that the series above are absolutely convergent due to (8.3). Thus (8.2) is
proved for all x ∈ M such that x = exe. However, the left-hand side of (8.2)
defines a normal contraction on M because exp(i

√
t g(ω)L) is a unitary in M for

every ω. On the other hand, limR→∞ 1l[−R, R](L) = 1 weakly in M. By the w*-
continuity, we see that (8.2) is true for all x ∈ M. (8.2) also shows that Tt preserves
the trace τ . On the other hand, since (adL)2 is positive on L2(M), Tt is symmetric.
Thus the semigroup (Tt) verifies (0.I)–(0.IV).

Remark. Let us consider a particular case where M = B(�2) and L is a real diagonal
matrix with diagonal entries (λ0, λ1, · · · ). Then

|ad L|(x) =
(
|λj − λk|xjk

)
j,k

.

Thus |ad L| becomes a Schur multiplier and so (Tt) reduces to the semigroup already
considered in the previous example with H = R and f(j) = λj .



434 MARIUS JUNGE AND QUANHUA XU

8.5. Free product. Let (Mi, ϕi)i∈I be a family of von Neumann algebras, each
equipped with a normal faithful state ϕi. Let

(M, ϕ) = ∗i∈I

(
Mi, ϕi

)
be the von Neumann algebra reduced free product (cf. [V] and [VDN]). Recall
that ϕ is a normal faithful state on M. If all ϕi are tracial, so is ϕ. Now for every
i ∈ I let a w*-continuous semigroup (T i

t )t≥0 on Mi be given satisfying the following
conditions:

i) T i
t is unital;

ii) ϕ ◦ T i
t = ϕi;

iii) T i
t is completely positive.

As usual, we always assume T i
0 = idMi

. Then by [BlD] (see also [Ch]) it follows
that for each t the family {T i

t }i∈I defines a completely positive unital map Tt on M,
preserving the state ϕ. Tt is uniquely determined by its action on the monomials:

Tt(x1 · · · xn) = T i1
t (x1) · · · T in

t (xn)

for any x1, ..., xn with xk ∈ M◦
ik

and i1 �= i2 �= · · · �= in, where M◦
i = {x ∈ Mi :

ϕi(x) = 0}. Tt is called the free product of the family {T i
t }i∈I and is denoted by

Tt = ∗i∈I T i
t . Then it is easy to see that (Tt) is a w*- continuous semigroup on M.

Thus this semigroup satisfies the conditions (7.I)–(7.III). By Lemma 7.1, (T i
t ) and

(Tt) extend to norm continuous semigroups respectively on Lp(Mi) and Lp(M) for
all 1 ≤ p < ∞.

Recall that the modular group σϕ
t is the free product of the modular groups σϕi

t ,
i ∈ I (cf. [Dy]). Thus if each T i

t satisfies (7.IV), so does Tt. On the other hand, it
is clear that the property (I.V) is also stable under free product.

Let us consider one special case. Note that Mi = C1Mi
⊕M◦

i . Let T i
t : Mi →

Mi be defined by

T i
t

∣∣
C1Mi

= idC1Mi
and T i

t

∣∣
M◦

i
= e−t idM◦

i
, t ≥ 0.

Then it is easy to check that (T i
t ) verifies the conditions i)–iii) above; moreover,

T i
t is symmetric relative to ϕi. The corresponding free product semigroup (Tt) is

uniquely determined by

Tt(x1 · · · xn) = e−ntx1 · · · xn

for any x1, ..., xn with xk ∈ M◦
ik

and i1 �= i2 �= · · · �= in with n ∈ N. This is
the free analogue of the classical Poisson semigroup on the unit circle. It plays an
important role in [RX].

The fixed point subspace of (Tt) above is simply C1M. Let us briefly discuss
the pointwise convergence in this case. Every element x ∈ M admits the following
formal development:

x = ϕ(x) +
∑
n≥1

∑
i1 �= ···�=in

x1 · · · xn ,

where xk ∈ M◦
ik

. Then

Tt(x) = ϕ(x) +
∑
n≥1

e−nt
∑

i1 �= ···�=in

x1 · · · xn .
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Thus by the results in subsection 7.4,

lim
t→0

Tt(x) = x and lim
t→∞

Tt(x) = ϕ(x) a.u.

A similar result also holds for x ∈ Lp(M) with 1 < p < ∞.

8.6. Group von Neumann algebras. Let G be a discrete group. Let V N(G)
denote the group von Neumann algebra of G. Recall that V N(G) is a von Neumann
algebra on �2(G) generated by the left regular representation λ. Let τG be the
canonical faithful tracial state on V N(G); i.e., τG is the vector state given by the
unit basis vector δe, where e is the identity of G and where {δg}g∈G denotes the
canonical basis of �2(G).

Now we assume that G is equipped with a length function, denoted by | · |. More
precisely, | · | is a positive function on G satisfying the following conditions:

i) |e| = 0;
ii) |g−1| = |g| for any g ∈ G;
iii) if d(f, g) = 1

2 (|f | + |g| − |fg−1|), then for all f, g, h ∈ G,

d(f, g) ≥ min{d(f, h), d(h, g)}.
Bożejko [Bo1] proved that g �→ e−t|g| is a positive definite function on G (see also
[Bo2]). Thus the associated Herz-Schur multiplier Tt is a normal completely positive
unital map on V N(G). More precisely, Tt is given on polynomials by

Tt

( ∑
g

ag λ(g)
)

=
∑

g

e−t|g| ag λ(g).

Moreover, Tt preserves the trace τG. Thus by Lemma 1.1, (Tt) extends to a semi-
group on Lp(V N(G)) for all 1 ≤ p < ∞. Note that if G = Z, then V N(G) = L∞(T)
and Tt becomes the usual Poisson semigroup on T.

More generally, it is proved in [Bo1] that for any 0 < α < 1 the function g �→
e−t|g|α is positive definite on G. It follows that

Pt

( ∑
g

ag λ(g)
)

=
∑

g

e−t|g|α ag λ(g)

defines a completely positive unital trace-preserving semigroup on V N(G). This
last statement also follows from the previous since (Pt) is subordinate to (Tt) by
(4.3).

Now let us specify the situation above to free groups. Let G be a free group,
say, G = Fn, a free group on n generators {g1, ..., gn} (n can be infinite). Let | · |
be the length function with respect to {g1, ..., gn}. Then the fact that e−t|·| is a
positive definite function on Fn goes back to Haagerup [H4]. Note that this is also
a special case of the free product in the previous example. Indeed, writing Fn as
the reduced free product of n copies of Z, we have(

V N(Fn), τFn

)
∗1≤k≤n

(
L∞(T), τZ

)
.

Then the semigroup on Fn appears as the free product of n copies of the usual Pois-
son semigroup on T. Applying our ergodic theorems to this case, we get Theorem
0.3.

More generally, let {Gi}i∈I be a family of discrete groups, each equipped with a
length function. Let T i

t be the associated semigroup on Gi defined previously. Let
G = ∗i∈I Gi be the reduced free product. Then by [Bo1] (or the previous example),
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the free product Tt = ∗i∈IT
i
t yields a symmetric completely positive contractive

semigroup on G.

8.7. q-Ornstein-Uhlenbeck semigroups. Let HR be a real Hilbert space and
HC its complexification. For −1 ≤ q ≤ 1 let Fq(HC) be the q-Fock space based on
HC constructed by Bożejko and Speicher (see [BS1] and [BS2]). Note that F1(HC),
F−1(HC) and F0(HC) are respectively the symmetric, anti-symmetric and full (=
free) Fock spaces. Given a vector h ∈ HC, let c(h) denote the associated (left)
creation operator on Fq(HC). c(h) is a bounded operator for q < 1 and a closed
densely defined operator for q = 1. Its adjoint c(h)∗ is the annihilation operator
associated to h and denoted by a(h). Let

gq(h) = c(h) + a(h), h ∈ HR.

gq(h) is a so-called q-Gaussian variable. Note that g1(h) is a usual Gaussian vari-
able, g0(h) a semi-circular variable in Voiculescu’s sense (cf. [V] and [VDN]), and
finally g−1(h) corresponds to a Fermion. The q-von Neumann algebra Γq(HR) is
the von Neumann algebra on Fq(HC) generated by all q-Gaussians, namely,

Γq(HR) = {gq(h) : h ∈ HR}′′ ⊂ B(Fq(HC)).

Let Ω be the vacuum vector in Fq(HC) and τq the associated vector state. Then
τq is faithful and tracial. Hence Γq(HR) is a type II1 von Neumann algebra for q < 1.
(Γ1(HR) is commutative.) Moreover, it is a noninjective factor if −1 < q < 1 and
dim H ≥ 2. We refer to [BKS], [N] and [Ri] for more information.

Now let S be a contraction on HR. Then S extends to a contraction on HC. The
second quantization Γ(S) is a normal completely positive unital trace-preserving
map on Γq(HR). To give the definition of Γ(S), we recall the Wick product. Since
Ω is separating for Γq(HR), the map x ∈ Γq(HR) �→ x(Ω) is injective. Its image is
a dense subspace of Fq(HC) (for Ω is cyclic). It is easy to see that all elementary
tensors belong to this image. The inverse map (defined on the image) is called
the Wick product, denoted by W . Thus if ξ is a linear combination of elementary
tensors, W (ξ) is the unique operator in Γq(HR) such that W (ξ)Ω = ξ. Note that
the collection of all such W (ξ)’s forms a w*-dense ∗-subalgebra of Γq(HR). Then
Γ(S) is uniquely determined by

Γ(S)
(
W (h1 ⊗ · · · ⊗ hn)

)
W (Sh1 ⊗ · · · ⊗ Shn), h1, ..., hn ∈ HC.

Applying this construction to S = e−t idHR
for t ≥ 0, we get a normal completely

positive unital trace-preserving map Tt = Γ(e−t idHR
). The action of Tt on the Wick

products is given by

Tt

(
W (h1 ⊗ · · · ⊗ hn)

)
= e−nt W (h1 ⊗ · · · ⊗ hn).

Then (Tt) is a semigroup on Γq(HR) satisfying all conditions (0.I)–(0.IV). This
is the q-Ornstein-Uhlenbeck semigroup associated with HR. The negative of its
infinitesimal generator is the so-called number operator. The cases q = 1 and
q = −1 correspond respectively to the classical and Fermionic Ornstein-Uhlenbeck
semigroup. (Tt)t in these two special cases have been extensively studied. See
[Bo3], [CaL] and [Bi] for related results.

The preceding discussion also applies to the quasi-free case. Then the corre-
sponding von Neumann algebras are of type III. See [Sh] for the case of q = 0 and
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[Hi] for the general case. In particular, for q = −1, we have the classical Araki-
Woods factors. In this case, the resulting semigroup is the extension of the previous
Fermionic Ornstein-Uhlenbeck semigroup to the type III setting.
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