## Minimal surfaces with the area growth of two planes: The case of infinite symmetry

HTML articles powered by AMS MathViewer

- by William H. Meeks III and Michael Wolf
- J. Amer. Math. Soc.
**20**(2007), 441-465 - DOI: https://doi.org/10.1090/S0894-0347-06-00537-6
- Published electronically: July 11, 2006
- PDF | Request permission

## Abstract:

We prove that a connected properly immersed minimal surface in ${\mathbb E}^3$ with infinite symmetry group and area growth constant less than $3\pi$ is a plane, a catenoid, or a Scherk singly-periodic minimal surface. As a consequence, the Scherk minimal surfaces are the only connected periodic minimal desingularizations of the intersections of two planes.## References

- D. Hoffman and W. H. Meeks III,
*The strong halfspace theorem for minimal surfaces*, Invent. Math.**101**(1990), no. 2, 373–377. MR**1062966**, DOI 10.1007/BF01231506 - H. Karcher,
*Embedded minimal surfaces derived from Scherk’s examples*, Manuscripta Math.**62**(1988), no. 1, 83–114. MR**958255**, DOI 10.1007/BF01258269
ka6 H. Karcher. Construction of minimal surfaces. - Hippolyte Lazard-Holly and William H. Meeks III,
*Classification of doubly-periodic minimal surfaces of genus zero*, Invent. Math.**143**(2001), no. 1, 1–27. MR**1802791**, DOI 10.1007/PL00005796
lu1 Hai-Ping Luo. - William H. Meeks III,
*Geometric results in classical minimal surface theory*, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) Surv. Differ. Geom., vol. 8, Int. Press, Somerville, MA, 2003, pp. 269–306. MR**2039993**, DOI 10.4310/SDG.2003.v8.n1.a10 - William H. Meeks III,
*Global problems in classical minimal surface theory*, Global theory of minimal surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 453–469. MR**2167272** - William H. Meeks III and Joaquín Pérez,
*Conformal properties in classical minimal surface theory*, Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., vol. 9, Int. Press, Somerville, MA, 2004, pp. 275–335. MR**2195411**, DOI 10.4310/SDG.2004.v9.n1.a8 - William H. Meeks III, Joaquín Pérez, and Antonio Ros,
*Uniqueness of the Riemann minimal examples*, Invent. Math.**133**(1998), no. 1, 107–132. MR**1626477**, DOI 10.1007/s002220050241 - William H. Meeks III and Harold Rosenberg,
*The global theory of doubly periodic minimal surfaces*, Invent. Math.**97**(1989), no. 2, 351–379. MR**1001845**, DOI 10.1007/BF01389046 - William H. Meeks III and Harold Rosenberg,
*The maximum principle at infinity for minimal surfaces in flat three manifolds*, Comment. Math. Helv.**65**(1990), no. 2, 255–270. MR**1057243**, DOI 10.1007/BF02566606 - William H. Meeks III and Harold Rosenberg,
*The geometry of periodic minimal surfaces*, Comment. Math. Helv.**68**(1993), no. 4, 538–578. MR**1241472**, DOI 10.1007/BF02565835 - Joaquín Pérez, M. Magdalena Rodríguez, and Martin Traizet,
*The classification of doubly periodic minimal tori with parallel ends*, J. Differential Geom.**69**(2005), no. 3, 523–577. MR**2170278**
PeTra1 J. Pérez and M. Traizet. The classification of singly periodic minimal surfaces with genus zero and Scherk type ends. - Richard M. Schoen,
*Uniqueness, symmetry, and embeddedness of minimal surfaces*, J. Differential Geom.**18**(1983), no. 4, 791–809 (1984). MR**730928** - Martin Traizet,
*Weierstrass representation of some simply-periodic minimal surfaces*, Ann. Global Anal. Geom.**20**(2001), no. 1, 77–101. MR**1846898**, DOI 10.1023/A:1010679705344 - Martin Traizet,
*An embedded minimal surface with no symmetries*, J. Differential Geom.**60**(2002), no. 1, 103–153. MR**1924593** - M. Weber and M. Wolf,
*Minimal surfaces of least total curvature and moduli spaces of plane polygonal arcs*, Geom. Funct. Anal.**8**(1998), no. 6, 1129–1170. MR**1664793**, DOI 10.1007/s000390050125 - Matthias Weber and Michael Wolf,
*Teichmüller theory and handle addition for minimal surfaces*, Ann. of Math. (2)**156**(2002), no. 3, 713–795. MR**1954234**, DOI 10.2307/3597281 - Michael Wolf,
*Flat structures, Teichmüller theory and handle addition for minimal surfaces*, Global theory of minimal surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 211–241. MR**2167261**, DOI 10.1080/10724117.2018.1424465

*Surveys in Geometry*, pages 1–96, 1989. University of Tokyo, 1989, and Lecture Notes No. 12, SFB256, Bonn, 1989.

*Desingularizing the intersection between a catenoid and a plane*. Ph.D. thesis, University of Massachusetts, Amherst, 1997.

*Transactions of the A.M.S.*To appear. sche1 H. F. Scherk. Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen.

*J. R. Angew. Math.*, 13:185–208, 1835.

## Bibliographic Information

**William H. Meeks III**- Affiliation: Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
- MR Author ID: 122920
**Michael Wolf**- Affiliation: Department of Mathematics, Rice University, Houston, Texas 77005
- MR Author ID: 184085
- Received by editor(s): March 10, 2005
- Published electronically: July 11, 2006
- Additional Notes: The first author was partially supported by NSF grant DMS-0405836

The second author was partially supported by NSF grants DMS-9971563 and DMS-0139887

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the NSF - © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**20**(2007), 441-465 - MSC (2000): Primary 53A10; Secondary 32G15
- DOI: https://doi.org/10.1090/S0894-0347-06-00537-6
- MathSciNet review: 2276776