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ON THE RESTRICTION OF DELIGNE-LUSZTIG CHARACTERS

MARK REEDER

1. Introduction

This paper was motivated by the following restriction problem for representations
of finite orthogonal groups.

Let F be an algebraic closure of a finite field f of cardinality q, a power of a prime
p > 2. Let G = SO(V ) be the special orthogonal group of a (2n + 1)-dimensional
F-space V with nondegenerate quadratic form Q. Assume V and Q are defined
over f, and let F denote the corresponding Frobenius endomorphisms of V and G.
Fix v ∈ V F with Q(v) �= 0 and let H be the stabilizer of v in G.

Let π ∈ Irr(GF ), σ ∈ Irr(HF ) be complex irreducible cuspidal representations of
the respective groups GF and HF of f-rational points. The problem is to compute
the multiplicity

〈π, σ〉HF = dim HomHF (π, σ)

of σ in the restriction of π to HF .
Using unpublished work of Bernstein and Rallis (independently) on p-adic or-

thogonal groups, it can be shown that

〈π, σ〉HF = 0 or 1.

In this paper, we compute 〈π, σ〉HF exactly, when π and σ are irreducible cuspidal
Deligne-Lusztig representations [8]. We do not rely on the above-mentioned work of
Bernstein and Rallis. Our calculation follows from a qualitative study of restrictions
of Deligne-Lusztig characters for general simple algebraic groups, to be described
later in this introduction.

To state our multiplicity result for orthogonal groups, we first recall the inducing
data. Let T ⊂ G, S ⊂ H be F -stable anisotropic tori in G and H. There are unique
partitions λ = (jλj), µ = (jµj ) of n (here λj , µj are the number of parts equal to
j) such that

TF �
∏
j

(f12j)
λj , SF �

∏
j

(f12j)
µj ,

where, for any d > 1, fd = FF d

is the extension of f in F of degree d, and f12j is the
kernel of the norm mapping f

×
2j → f

×
j . The number of parts

∑
j µj is even if H is

split, and odd if H is nonsplit.
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Let χ ∈ Irr(TF ) and η ∈ Irr(SF ) be irreducible characters of TF and SF which
are regular in the sense that χ and η have trivial stabilizers in the respective Weyl
groups WG(T )F and WH(S)F . We may write

χ = ⊗jχj , η = ⊗jηj ,

where
χj = χj1 ⊗ · · · ⊗ χjλj

∈ Irr
(
(f12j)

λj
)
,

each χjk is a character of f12j , and likewise for η. Let Γ2j � Z/2jZ be the Galois
group of f2j/f.

Definition 1.1. We say that χ and η intertwine if ηjk′ is a Γ2j-conjugate of χjk

for some 1 ≤ j ≤ n, 1 ≤ k ≤ λj , 1 ≤ k′ ≤ µj .

Note that χ and η can intertwine even if T �� S. However, if λ and η have no
common parts, that is, if λjµj = 0 for all j, then χ and η do not intertwine.

By Deligne-Lusztig induction, we have virtual representations RG
T,χ of GF and

RH
S,η of HF , respectively. By the regularity assumptions on χ and η, these are

actually irreducible characters, up to sign. In fact, we have

(−1)rk GRG
T,χ ∈ Irr(GF ), (−1)rk HRH

S,η ∈ Irr(HF ).

These two irreducible characters are cuspidal, since T and S are anisotropic. We
prove:

Theorem 1.2. Let T and S be anisotropic F -stable maximal tori in G and H,
respectively, and let χ ∈ Irr(TF ), η ∈ Irr(SF ) be regular characters. Then

(−1)rk G+rk H〈RG
T,χ, RH

S,η〉HF =

{
0 if η, χ intertwine,
1 if η, χ do not intertwine.

If T and S are arbitrary F -stable maximal tori, but χ and η are still regular,
then the multiplicity is either zero or a power of two; see (9.9) below.

The multiplicity result 1.2 is used in [12] to verify some cases of the conjectures
of [11] describing restrictions from p-adic SO2n+1 to SO2n in terms of symplectic
local root numbers and the parameterization of depth-zero supercuspidal L-packets
given in [7].

As already mentioned, Theorem 1.2 follows from a qualitative result, in a general
setting, on multiplicities of Deligne-Lusztig representations.

Let G be a a connected simple algebraic group defined over f, and let H be a
connected reductive f-subgroup of G. Fix F -stable maximal tori T ⊂ G and S ⊂ H,
along with arbitrary characters χ ∈ Irr(TF ) and η ∈ Irr(SF ).

From this data Deligne and Lusztig [8] construct virtual characters RG
T,χ and

RH
S,η on GF and HF , respectively. Let 〈 , 〉HF be the canonical pairing on virtual

characters of HF . We are interested in the multiplicity

〈RG
T,χ, RH

S,η〉HF ,

where RG
T,χ is viewed as a virtual character of HF , by restriction.

Let B and BH be Borel subgroups of G and H, respectively, and let δ be the mini-
mum codimension of a BH -orbit in G/B. The invariant δ is called the complexity
of the H-variety G/B. The theory of complexity was first studied for reductive
groups over fields of characteristic zero (cf. [1] and the references therein). In that
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setting, it is proved in [1] that δ governs the growth of multiplicities in restric-
tions of algebraic representations. We will show that δ also governs the growth of
multiplicities in restrictions of Deligne-Lusztig representations.

Because we are in nonzero characteristic, we need to make an assumption. Let
g, h be the Lie algebras of G and H.

Assumption 1.3. There is an Ad(H)-stable decomposition g = h ⊕ m, and a
nondegenerate symmetric bilinear form B on m, invariant under Ad(H).

This assumption holds if p is a good prime for g and the Killing form of g is
nondegenerate on h [24, I.5.3]. For G = SON+1, H = SON , our assumption holds
for p > 2.

For an integer ν ≥ 1, let NT
ν : TF ν → TF be the norm map, and let

χ(ν) = χ ◦ NT
ν , η(ν) = η ◦ NS

ν .

Under Assumption 1.3, we prove the following.

Theorem 1.4. There is a polynomial of degree at most δ:

M(t) = Atδ + · · · ∈ Q[t],

whose coefficients depend on χ and η, and an integer m ≥ 1 such that

〈RG
T,χ(ν) , R

H
S,η(ν)〉HF ν = M(qν)

for all positive integers ν ≡ 1 mod m. The degree δ is optimal: if q is sufficiently
large, there exist χ, η such that the leading coefficient A is nonzero.

We also give an explicit formula for the leading term A in Theorem 1.4 (see
Proposition 7.4). For G = SON+1, H = SON , we have δ = 0, and our explicit
formula for A leads to Theorem 1.2 (see Section 9). Even if δ > 0 one can sometimes
use Theorem 1.4 to compute exact multiplicities, by exploiting the polynomial
nature of M(t). In Section 10 we illustrate this for G = SO7, H = G2, where
δ = 1.

Our formula for A also allows us to show, for general G and H, and “very regular”
χ (see section 8), that the multiplicity

〈RG
T,χ, StH〉HF

of the Steinberg representation StH is a monic polynomial in q of degree δ, while
the multiplicity of the trivial representation

〈RG
T,χ, 1H〉HF

is a polynomial in q of degree strictly less than δ. In particular, for G = SO2n+1

and H = SO2n, we have

〈RG
T,χ, StH〉HF = 1, 〈RG

T,χ, 1H〉HF = 0,

for very regular χ.
To prove Theorem 1.4 we use a method introduced by Thoma [27] for the study of

the restriction of irreducible representations from GLn(f) to GLn−1(f) (where again
δ = 0). In that situation, the Green’s functions giving the character on unipotent
elements were explicitly known. Hagedorn [13], in his 1994 Ph.D. thesis, showed
how some of Thoma’s methods could be generalized to Deligne-Lusztig characters
for other pairs of classical groups, where the Green’s functions are less explicit. The
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abstract results of Hagedorn gave me the courage to attempt such calculations for
general groups and to obtain closed multiplicity formulas for orthogonal groups.

It is a pleasure to thank Dick Gross for initiating the work in [12] which led to
this paper, for helpful remarks on an earlier version, and for aquainting me with
Hagedorn’s thesis.

The referee read the original version of this paper with care and insight, made
valuable comments and simplified some of the arguments. In particular, the proof
of Lemma 3.1 given below is due to the referee and is much shorter than the original
one.

Some general notation: The cardinality of a finite set X is denoted by |X|.
Equivalence classes are generally denoted by [ · ], sometimes with ornamentation.
If g is an element of a group G, we write Ad(g) for the conjugation map Ad(g) :
x �→ gxg−1, and also write gT := gTg−1 for a subgroup T ⊂ G. The center of G is
denoted Z(G) and the centralizer of g ∈ G is denoted CG(g).

We write 〈 , 〉H for the pairing on the space of class functions on a finite group
H, for which the irreducible characters of H are an orthonormal basis. If G, G′ ⊃ H
are finite overgroups of H and ψ, ψ′ are class functions on G, G′ respectively, then
〈ψ, ψ′〉H is understood to mean 〈ψ|H , ψ′|H〉H , where |H denotes restriction to H.

2. Remarks on maximal tori

Let G be a connected reductive algebraic F-group. We assume G is defined over
f and has Frobenius F . If T is a maximal torus in G we denote its normalizer in
G by NG(T ) and write WG(T ) = NG(T )/T for the Weyl group of T in G. If T is
F -stable, we have

W (T )F = NG(T )F /TF ,

by the Lang-Steinberg theorem.
The reduction formula for Deligne-Lusztig characters (recalled in section 4 below)

involves a sum over the following kind of subset of GF . Fix an F -stable maximal
torus T ⊂ G, and let s be a semisimple element in GF . We must sum over the set

NG(s, T )F := {γ ∈ GF : sγ ∈ T}.

Note that NG(s, T )F , if nonempty, is a union of GF
s ×NG(T )F double cosets, where

Gs := CG(s)◦ is the identity component of the centralizer CG(s) of s in G.
To say that sγ ∈ T is to say that γT ⊂ Gs, so determining the GF

s × NG(T )F

double cosets in NG(s, T )F amounts to determining the GF
s -conjugacy classes of

F -stable maximal tori in Gs which are contained in a given GF -conjugacy class.
Such classes of tori are parameterized by twisted conjugacy classes in Weyl groups
of Gs and G.

The aim of this section is to parameterize the GF
s × NG(T )F double cosets in

NG(s, T )F in terms of the fiber of a natural map between twisted conjugacy classes
in the Weyl groups of Gs and G. This parameterization will be fundamental to our
later calculations with Deligne-Lusztig characters.

We begin by recalling the classification of F -stable maximal tori in G. See [5,
chap. 3] for more details in what follows. Fix an F -stable maximal torus T0 in
G contained in an F -stable Borel subgroup of G, and abbreviate NG = NG(T0),
WG = WG(T0).
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Let T (G) denote the set of all F -stable maximal tori in G. Then T (G) is a finite
union of GF -orbits. For any T ∈ T (G), let

[T ]G := {γT : γ ∈ GF }
denote the GF -orbit of T . There is g ∈ G such that T = gT0. Since T is F -stable,
we have g−1F (g) ∈ NG. This gives an element

w := g−1F (g)T0 ∈ WG.

The map Ad(g)t = gtg−1 is an f-isomorphism

Ad(g) : (T0, wF ) −→ (T, F ),

where the second component denotes the action of Frobenius under an f-structure.
For any finite group A with F -action, we let H1(F, A) denote the set of F -

conjugacy classes in A. These are the orbits of the action of A on itself via (a, b) �→
abF (a)−1. Let [b] ∈ H1(F, A) denote the F -conjugacy class of an element b ∈ A.

For g, T, w as above, the F -conjugacy class of w is independent of the choice of
g. Hence we have a well-defined class

cl(T, G) := [w] ∈ H1(F, WG).

For each ω ∈ H1(F, WG), the set

Tω(G) := {T ∈ T (G) : cl(T, G) = ω}
is a single GF -orbit in T (G), and all GF -orbits are of this form. Thus, the partition
of the set of F -stable maximal tori into GF -orbits is given by

T (G) =
∐

ω∈H1(F,WG)

Tω(G).

Let s ∈ GF be semisimple, and let Ts be an F -stable maximal torus of Gs

contained in an F -stable Borel subgroup of Gs, and let WGs
be the Weyl group of

Ts in Gs. The partition of T (Gs) into GF
s -orbits is given, as above, by

T (Gs) =
∐

υ∈H1(F,WGs )

Tυ(Gs).

If T ∈ T (G), the set of F -stable maximal tori in Gs which are GF -conjugate to
T is a finite union (possibly empty) of GF

s -orbits. We want to describe this union
in terms of F -conjugacy classes in WGs

. That is, given ω ∈ H1(F, WG), we have

(2.1) Tω(G) ∩ T (Gs) =
∐

υ∈Mω

Tυ(Gs)

for some subset Mω ⊆ H1(F, WGs
), and our task is to find Mω.

The first point is that Ts is generally not contained in an F -stable Borel subgroup
of G. Let g ∈ G be such that gTs = T0, and let ẏs := gF (g)−1 have image ys ∈ WG.
Then

cl(Ts, G) = [ys] ∈ H1(F, WG),
and Ad(g) is an f-isomorphism

Ad(g) : (Ts, F ) −→ (T0, ysF ).

Now T0 is also a maximal torus in Ad(g)Gs, whose Weyl group

W ′
Gs

:= Ad(g)WGs

is a subgroup of WG, stable under Ad(ys) ◦ F .
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Define jGs
: H1(F, WGs

) → H1(F, WG) to be the composition of maps

(2.2) jGs
: H1(F, WGs

)
Ad(g)−→ H1(ysF, W ′

Gs
) incl−→ H1(ysF, WG)

τys−→ H1(F, WG),

where the middle map is induced by the inclusion W ′
Gs

↪→ WG and τys
is the

twisting bijection given by τys
[x] = [xys].

Now let T be an arbitrary F -stable maximal torus in Gs. Write T = hTs, with
h ∈ Gs, so that h−1F (h) ∈ cl(T, Gs). For g ∈ G as above, we have T = hg−1

T0.
Since

gh−1F (hg−1) = g(h−1F (h))g−1 · gF (g)−1,

it follows that

(2.3) cl(T, G) = jGs
(cl(T, Gs)) .

This proves:

Lemma 2.1. For each ω ∈ H1(F, WG) and T ∈ Tω(Gs), we have

Tω(G) ∩ T (Gs) =
∐

υ∈j−1
Gs

(ω)

Tυ(Gs).

We can also parameterize the GF
s -orbits in [T ]G ∩ T (Gs) via the mapping

(2.4) NG(s, T )F := {γ ∈ GF : s ∈ γT} −→ [T ]G ∩ T (Gs), γ �→ γT .

Note that GF
s acts on NG(s, T )F by left multiplication, and that (2.4) factors

through the quotient

(2.5) N̄G(s, T )F := GF
s \NG(s, T )F .

The action of NG(T )F on NG(s, T )F by right multiplication commutes with the
GF

s -action, hence factors through an action on N̄G(s, T )F , where TF acts trivially.
This gives an action of WG(T )F on N̄G(s, T )F , whose orbits are the GF

s ×N(T )F -
double cosets in N(s, T )F .

Lemma 2.2. The mapping (2.4), sending γ �→ γT , induces a bijection

N̄G(s, T )F /WG(T )F ∼−→ GF
s \

(
[T ]G ∩ T (Gs)

)
with the property that the stabilizer in WG(T )F of the class γ̄ ∈ N̄(s, T )F is iso-
morphic, via Ad(γ), to WGs

(γT )F .

Proof. The bijectivity is straightforward and left to the reader. Let w ∈ WG(T )F ,
and let ẇ ∈ NG(T )F be a representative of w. Then

γ̄ · w = γ̄ ⇔ GF
s γẇ = GF

s γ ⇔ Ad(γ)ẇ ∈ NGs
(γT ).

This implies the assertion about the stabilizer. �
Combining Lemmas 2.1 and 2.2, we get an explicit formula for |N̄G(s, T )F |.

Corollary 2.3. Let ω ∈ H1(F, WG) and T ∈ Tω(G). Then the set NG(s, T )F is
nonempty if and only if the fiber j−1

Gs
(ω) is nonempty, in which case we have

|N̄G(s, T )F | =
∑

υ∈j−1
Gs

(ω)

|WG(T )F |
|WGs

(Tυ)F | ,

where, for each υ ∈ j−1
Gs

(ω), the torus Tυ is chosen arbitrarily in Tυ(Gs).



ON THE RESTRICTION OF DELIGNE-LUSZTIG CHARACTERS 579

3. On the centralizer of a semisimple element

Let s ∈ GF be semisimple. In the previous section we parameterized the set of
GF

s -conjugacy classes of maximal tori in Gs which are contained in a given GF -
conjugacy class, in terms of fibers of the map jGs

: H1(F, WGs
) → H1(F, WG).

To compute this map jGs
concretely, we must find an element ys ∈ WG such that

cl(Ts, G) = [ys], where Ts ∈ T (Gs) is contained in an F -stable Borel subgroup of
Gs. This amounts to finding the f-isomorphism class of the connected centralizer
Gs.

An elegant formula for ys was given by Carter [6], using the Brauer complex.
Here we explain a different method that is suited to our later computations; namely
we show how the class [ys] can be determined from the effect of F on a “diagonal-
ized” G-conjugate of s. Unfortunately, both the present method, as well as that of
[6] require that CG(s) be connected. That is, we must assume that Gs = CG(s).
This holds for any semisimple s ∈ G if G has simply-connected derived group. Our
method generalizes that of Gross [10], who determined CG(s) when this group is a
torus (over an arbitrary field).

Let Φ denote the set of roots of T0 in G. Let ϑ denote the automorphisms of Φ
and WG induced by F . For α ∈ Φ with corresponding reflection sα ∈ WG, we have

α ◦ F = qϑ−1 · α, ϑ(sα) = sϑ·α.

Here is our recipe for finding cl(Ts, G). Let t ∈ T0 be a G-conjugate of s, and let

Φt = {α ∈ Φ : α(t) = 1}.
Since t has a conjugate in GF , there is w ∈ W (not necessarily unique) such that

(3.1) F (t) = tw.

Choose such a w arbitrarily. From (3.1) it follows that

(3.2) wϑ · Φt = Φt.

Now choose any positive system Φ+
t ⊂ Φt. Then (3.2) implies that wϑ · Φ+

t is
another positive system in Φt. Being the Weyl group of Φt, the group WGt

acts
simply transitively on positive systems in Φt, so there is a unique x ∈ WGt

such
that

(3.3) wϑ · Φ+
t = x · Φ+

t .

Setting y = x−1w, we see that w can be factored uniquely as

(3.4) w = xy,

where x ∈ WGt
and yϑ · Φ+

t = Φ+
t .

Since CG(t) is connected, the group WGt
is the full stabilizer of t in WG. This

means that a different choice of w satisfying (3.1) will change x, but not y.

Lemma 3.1. With y constructed as above, we have

cl(Ts, G) = [y] ∈ H1(F, WG).

Proof. The following proof was provided by the referee; it is shorter than the original
proof. Choose g ∈ G such that ẏ = g−1F (g) ∈ NG is a representative of y. Then

yF (t) = tx = t,
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which implies that gt ∈ GF . Since CG(s) is connected, any element of GF which is
G-conjugate to s is in fact GF -conjugate to s. Hence, by multiplying g on the left
by an element of GF , we may assume that s = gt.

By definition of y, there is an Ad(ẏ)F -stable Borel subgroup Bt ⊂ Gt contain-
ing T0. Hence gBt is an F -stable Borel subgroup of Gs, containing the F -stable
maximal torus T ′

s := gT0. Since T ′
s is GF

s -conjugate to Ts, it follows that

cl(Ts, G) = [g−1F (g)] = [y],

as claimed. �

4. Deligne-Lusztig characters

Let T ∈ T (G) be an F -stable maximal torus in G, and let χ ∈ Irr(TF ). The
Deligne-Lusztig character RG

T,χ has the following reduction formula [8]: For u unipo-
tent in GF

s , we have

(4.1) RG
T,χ(su) =

∑
γ̄∈N̄G(s,T )F

χ(γ−1sγ)QGs

γTγ−1(u).

The summation is over the set N̄G(s, T )F defined in (2.5), and for any reductive
f-group H, and S ∈ T (H), the Green function QH

S on the unipotent set of HF

is defined by
QH

S (u) = RH
S,1(u).

In this section we describe the summation over N̄G(s, T )F in (4.1) in terms of fibers
of the map jGs

studied in the previous two sections.
Breaking the sum (4.1) into WG(T )F -orbits, we have

(4.2) RG
T,χ(su) =

∑
υ∈j−1

Gs
(ω)

QGs

Tυ
(u)

∑
γ̄∈Oυ

χ(γ−1sγ),

where ω = cl(T, G), Tυ is any torus in Tυ(Gs), and Oυ is the WG(T )F -orbit in
N̄G(s, T )F corresponding to υ ∈ j−1

Gs
(ω) as in Lemma 2.2.

By the stabilizer assertion in Lemma 2.2, the inner sum in (4.2) can be written as
follows. For any γ ∈ NG(s, T )F and χ′ ∈ Irr(TF ), the value at s of the transported
character

γχ′ := χ′ ◦ Ad(γ−1) ∈ Irr(γTF )

depends only on the image γ̄ ∈ N̄G(s, T )F . We have

(4.3)
∑

γ̄∈Oυ

χ(γ−1sγ) =
1

|WGs
(Tυ)F |

∑
x∈WG(T )F

γxχ(s),

where γ on the right side of (4.3) is an arbitrary element of NG(s, T )F such that
γ̄ ∈ Oυ.

In our later computations with RG
T,χ it will be useful to let s vary in GF in such a

way that Gs is unchanged. Let Z(Gs) denote the center of Gs. For υ ∈ H1(F, WGs
),

the function

(4.4) χυ :=
∑

γ̄∈Oυ

γχ
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is well-defined on Z(Gs)F , and we have

(4.5) RG
T,χ(zu) =

∑
υ∈j−1

Gs
(ω)

QGs

Tυ
(u)χυ(z), if Gz = Gs.

5. Multiplicity as a polynomial

In this section we begin the proof of Theorem 1.4 and will show that the multi-
plicity is given by a polynomial function. Let G be a connected reductive algebraic
group over f. Let H ⊂ G be a connected reductive f-subgroup of G, and let S be
an F -stable maximal torus of H.

5.1. Summation on HF . Suppose we are given a function f : HF → C, invariant
under conjugation by HF , with the property that if h ∈ HF has Jordan decompo-
sition h = su, then f(h) = 0 unless the conjugacy class Ad(HF ) · s meets S. Our
first aim is to express the sum of f over HF as a sum of rational functions in q over
an index set which does not depend on q.

Let Hss and Hupt be the sets of semisimple and unipotent elements of H. Let
S(HF ) and U(HF ) be the sets of Ad(HF )-orbits in (Hss)F and (Hupt)F , respec-
tively.

By the vanishing assumption on f , we have

1
|HF |

∑
h∈HF

f(h) =
1

|HF |
∑

s∈(Hss)F

∑
u∈(Hupt

s )F

f(su)

=
1

|HF |
∑

s∈SF

|Ad(HF ) · s|
|Ad(HF ) · s ∩ S|

∑
[u]∈U(HF

s )

|Ad(HF
s ) · u|f(su).

(5.1)

The map γ �→ sγ induces a bijection

CH(s)F\NH(s, S)F ∼−→ Ad(HF ) · s ∩ S,

so that

|Ad(HF ) · s ∩ S| =
|NH(s, S)F |
|CH(s)F | .

Recalling that
N̄H(s, S)F = HF

s \NH(s, S)F ,

we get

(5.2)
1

|HF |
∑

h∈HF

f(h) =
∑

s∈SF

1
|N̄H(s, S)F |

∑
[u]∈U(HF

s )

1
|CHs

(u)F |f(su).

5.2. A partition of S. To this point, the overgroup G has not played a role. Now
G is used to partition the sum over SF in (5.2), as follows. Let I(S) be an index
set for the set of subgroups

{Gs : s ∈ S}.
Note that each element of I(S) is determined by a subset of the roots of S in G;
hence I(S) is finite. For ι ∈ I(S) let Gι be the corresponding connected centralizer,
and let

Sι := {s ∈ S : Gs = Gι}.
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Thus, S is finitely partitioned as

S =
∐

ι∈I(S)

Sι.

The F -action on S induces a permutation of I(S), and we let I(S)F be the F -fixed
points in I(S). Note that if SF

ι is nonempty, then ι ∈ I(S)F .
For ι ∈ I(S), we set

Hι := (H ∩ Gι)◦,

which is none other than Hs for any s ∈ Sι.
Note that if s ∈ Sι, then s ∈ S ∩ CH(s), which implies that

(5.3) s ∈ Hι ⊂ Gι.

Returning to our sum (5.2), we now have

(5.4)
1

|HF |
∑

h∈HF

f(h) =
∑

ι∈I(S)F

∑
[u]∈U(HF

ι )

∑
s∈SF

ι

1
|N̄H(s, S)F |

f(su)
|CHι

(u)F | .

5.3. Restriction of Deligne-Lusztig characters. We now consider the function
f arising in our multiplicity formula. Let H, S be as above, let T be an F -stable
maximal torus of G, and let χ ∈ Irr(TF ), η ∈ Irr(SF ) be arbitrary characters.

Using the function f : HF → C given by

(5.5) f(h) = RG
T,χ(h) · RH

S,η(h),

we have

(5.6) 〈RG
T,χ, RH

S,η〉HF =
1

|HF |
∑

h∈HF

f(h).

The map
jGs

: H1(F, WGs
) −→ H1(F, WG)

defined in (2.2) depends only on Gs, so we set

jGι
:= jGs

, for any s ∈ Sι.

We have an analogous map

jHι
: H1(F, WHι

) −→ H1(F, WH).

Likewise, the sets N̄G(s, T )F and N̄H(s, S)F depend only on ι, so we now write

N̄G(ι, T )F := N̄G(s, T )F , N̄H(ι, S)F := N̄H(s, S)F ,

for s ∈ SF
ι .

Using (4.5) for G and H, along with (5.4), our multiplicity formula becomes

(5.7) 〈RG
T,χ, RH

S,η〉HF =
∑

ι∈I(S)F

[u]∈U(HF
ι )

∑
υ, ς

QGι

Tυ
(u)QHι

Sς
(u)

|N̄H(ι, S)F ||CHι
(u)F |

∑
s∈SF

ι

χυ(s)ης(s),

where the middle sum runs over υ ∈ j−1
Gι

(cl(T, G)) and ς ∈ j−1
Hι

(cl(S, H)). The
character sums χυ and ης are as defined in (4.4).
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5.4. Green functions. We digress from our multiplicity formula (5.7) to recall
the polynomial nature of Green functions QG

T , defined on the unipotent set of GF ,
for a connected reductive f-group G with Frobenius F and F -stable maximal torus
T in G.

For u = 1, we have

(5.8) QG
T (1) = εG(w)[GF : TF ]p′ ,

where [GF : TF ]p′ is the maximal divisor of the index [GF : TF ] which is prime
to p, w ∈ cl(T, G) and εG : WG → {±1} is the sign character of WG. Note that
εG(w) = (−1)rk G+rk T [5, 7.5.2].

For u �= 1, the Green functions QG
T (u) can be expressed as polynomials which are

known explicitly by tables for exceptional groups [3], [18] and for classical groups
by recursive formulas [19] which can be implemented on a computer [9]. It will
suffice for us to know the leading terms of these Green polynomials, which can be
expressed in a uniform way.

Let BG be the variety of Borel subgroups of G, and let Bu
G be the variety of u-

fixed points in BG. The irreducible components of Bu
G all have the same dimension,

and we set
dG(u) := dimBu

G.

Steinberg proved that

(5.9) 2dG(u) = dimCG(u) − rkG,

where rk G is the absolute rank of G.
Assume that p is a good prime for G. For each unipotent class [u] ∈ U(GF ) and

twisted conjugacy class [w] = ς ∈ H1(F, WG), there is a polynomial

Qw,u(t) = Qς,u(t) ∈ Z[t],

of degree at most dG(u), such that

QG
T (u) = Qw,u(q)

if cl(T, G) = [w] (see [20] and the references therein).
The coefficient of tdG(u) in Qw,u(t) is

tr[w, H2dG(u)(Bu
G)],

where w acts on the �-adic cohomology of Bu
G via the Springer construction (see

[21], [14], [16]).
If we take u = 1, then dG(1) = N is the number of positive roots of G and

(5.10) QG
w,1(t) = εG(w)tN + lower powers of t,

which is easily seen to be consistent with (5.8).
Suppose now that we replace F by F ν for some ν ≥ 1. The GF ν

-class of T is
then represented by

(wϑ)ν · ϑ−ν ∈ WG,

where ϑ is the automorphism of WG induced by F . Suppose ν ≡ 1 mod m, where
m is a positive integer divisible by the exponent of the finite group WG � 〈ϑ〉. This
implies that F ν = F on WG and that (wϑ)ν · ϑ−ν = w for all w ∈ WG. It follows
that H1(F, WG) = H1(F ν , WG) and that the class cl(T, G) is the same with respect
to F or F ν .
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Likewise, the class of u in GF or GF ν

is determined by the G-conjugacy class
C ⊂ G containing u, together with a class in H1(F, AG(C)) or H1(F ν , AG(C)),
where AG(C) is the component group of the centralizer of some F -fixed element
in C. As in the preceding paragraph, we may take m sufficiently divisible so that
F ν = F on AG(C) and that the class of u in GF or GF ν

corresponds to the same
class in H1(F, AG(C)). We may choose m so that this holds for every C, since
there are finitely many unipotent classes.

Let QG
T,ν be the Green function for T on GF ν

. For m sufficiently divisible as in
the previous two paragraphs and ν ≡ 1 mod m we have

QG
T,ν(u) = Qw,u(qν).

(Note the difficulty with the exceptional class in E8 is avoided since our conditions
on m imply that ν is odd; see [20, Remark 6.2].)

5.5. A progression of powers of Frobenius. The indices of and terms of the
summations in (5.7) depend on F , and we wish to remove this dependence for
infinitely many powers of F , in order to represent the sum in (5.7) as the value of
a rational function.

There is a positive integer m such that Fm acts trivially on the finite set I(S) and
the divisibility conditions on m from the previous section hold when G is replaced
by Gι or Hι for every ι ∈ I(S).

In particular, m is divisible by the orders of the component groups Aι(u) of the
centralizers in Hι of all unipotent elements u ∈ HF

ι for every ι ∈ I(S)F , and Fm is
the identity automorphism on Aι(u) for all such ι and u. This implies that for each
ι ∈ I(S)F and [u] ∈ U(HF

ι ), there is a polynomial Pι,u(t) ∈ Z[t], of degree equal to
dim CHι

(u), such that

(5.11) |CHι
(u)F ν

| = Pι,u(qν)

for all ν ≡ 1 mod m. Moreover, each polynomial Pι,u(t) is of the form |Aι(u)| times
a monic polynomial in Z[t].

The above conditions on m also ensure that the indices in the outer two sum-
mations in (5.7), as well as the quantity |N̄H(ι, S)F | are unchanged if F is replaced
by F ν for ν ≡ 1 modm.

To handle the inner sum, we add more conditions: in the next section we will
define certain subgroups ZJ of S, indexed by subsets J ⊂ I(S)F . We also insist that
m be divisible by |ZJ/Z◦

J | and that Fm act trivially on ZJ/Z◦
J for each J ⊂ I(S)F .

5.6. Character sums. In order to interpret the inner sum of (5.7) as a rational
function, we shall replace each summand SF

ι by the group ZF
ι , where

(5.12) Zι := Z(Gι) ∩ S.

It is easy to check that

Zι ⊂ Z(Hι),
Sι ⊂ Zι ⊂ S,

Gι = CG(Zι)◦.
(5.13)
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Let χυ and ης be the character sums appearing in (5.7). Our aim is to express
the sum

(5.14)
1

|ZF
ι |

∑
s∈SF

ι

χυ(s)ης(s)

as the value of a rational function.
Define a partial ordering on I(S) by

ι′ ≤ ι ⇔ Gι ⊆ Gι′ .

Equivalently, we have
ι′ ≤ ι ⇔ Zι′ ⊆ Zι.

Let
Yι := Zι − Sι

be the complement of Sι in Zι.

Lemma 5.1. For every ι ∈ I(S) we have

Yι =
⋃
ι′<ι

Zι′ .

Proof. Let s ∈ Yι. Then s ∈ Sι′ for some ι′ ∈ I(S), with ι′ �= ι, so s ∈ Zι′ . Since
Yι ⊂ Zι, we have

Gι = C◦
G(Zι) ⊂ C◦

G(Yι) ⊆ Gs = Gι′ ,

so ι′ < ι.
Conversely, let s ∈ Zι′ , with ι′ < ι. Note that s ∈ Zι. If s /∈ Yι, then s ∈ Sι.

This implies that
Gι′ = CG(Zι′)◦ ⊂ Gs = Gι,

contradicting ι′ < ι. This proves the lemma. �

For a subset J ⊆ I(S), let
ZJ =

⋂
ι′∈J

Zι′ .

There is a polynomial fJ ∈ C[t] of degree dim ZJ such that

fJ (qν) = |ZF ν

J |, for all ν ≡ 1 mod m.

For ν ≥ 1, let

NTυ
ν : TF ν

υ −→ TF
υ , NSς

ν : SF ν

ς −→ SF
ς

be the norm mappings. These are surjective. Set

χ(ν)
υ := χυ ◦ NTυ

ν , η(ν)
ς := ης ◦ NSς

ν .

Assume that ι ∈ J ⊂ I(S)F . Then ZJ is F -stable and

ZF
J ⊂ ZF

ι ⊂ Z(Gι)F ∩ Z(Hι)F .

Both χυ and ης are defined on the latter group (see (4.4)), so we may restrict them
to ZF

J . Our conditions on m at the end of section 5.5 ensure that the restricted
norm mapping

NSς
ν : ZF ν

J −→ ZF
J

is also surjective. This implies, for all integers ν ≡ 1 mod m, that

〈χ(ν)
υ , η(ν)

ς 〉ZF ν
J

= 〈χυ, ης〉ZF
J

.
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Hence for each J , we have

(5.15)
∑

z∈ZF ν
J

χ
(ν)
υ (z)η(ν)

ς (z) = 〈χυ, ης〉ZF
J
· fJ (qν).

Let I(ι, S) := {ι′ ∈ I(S) : ι′ < ι}. It now follows from Möbius inversion that the
rational function

(5.16) Θι,υ,ς(t) := 〈χυ, ης〉ZF
ι

+
∑

J⊆I(ι,S)F

(−1)|J|〈χυ, ης〉ZF
J

fJ (t)
fι(t)

has the property that

Θι,υ,ς(qν) =
1

|ZF ν

ι |
∑

s∈SF ν
ι

χ
(ν)
υ (s)η(ν)

ς (s),

for all ν ≡ 1 mod m. Since dimZJ ≤ dimZι for all J ⊆ I(ι, S)F , we have

(5.17) deg Θι,υ,ς ≤ 0.

5.7. Multiplicity as a polynomial. We return to our multiplicity formula (5.7).
We have shown that

(5.18) 〈RG
T,χ, RH

S,η〉HF =
∑
α

Ψα(q)Θα(q),

where α runs over quadruples α = (ι, u, υ, ς), with

(5.19) ι ∈ I(S)F , [u] ∈ U(HF
ι ), υ ∈ j−1

Gι
(cl(T, G)), ς ∈ j−1

Hι
(cl(S, H)),

Θα(t) = Θι,υ,ς(t) is the rational function defined in (5.16) and Ψα(t) is the rational
function defined by

(5.20) Ψα(t) = fι(t) ·
QGι

υ,u(t)QHι
ς,u(t)

|N̄H(ι, S)F ||Pι,u(t)| .

Here QGι
υ,u(t) and QHι

ς,u(t) are the Green polynomials from section 5.4 and Pι,u(t) is
the polynomial from (5.11).

If F is replaced by F ν with ν ≡ 1 mod m, where m is as in section 5.5, the
summation indices α are unchanged, so that the rational function

(5.21) M(t) :=
∑
α

Ψα(t)Θα(t)

has the property that

(5.22) 〈RG
T,χ(ν) , R

H
S,η(ν)〉HF ν = M(qν),

for all ν ≡ 1 mod m. In particular, M(qν) is an integer for all ν ≡ 1 modm.
We next observe that the numerator of each term in M(t) belongs to Z[t], and

the denominator of each term in M(t) is an integer times a monic polynomial in
Z[t]. Hence there is a ∈ Z such that

aM(t) =
f(t)
g(t)

,

where f(t) and g(t) are in Z[t] and g(t) is monic. We can therefore write

aM(t) = p(t) + r(t),
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where p(t) ∈ Z[t] and r(t) is a rational function of negative degree. On the other
hand,

r(qν) = aM(qν) − p(qν) = a〈RG
T,χ(ν) , R

H
S,η(ν)〉HF ν − p(qν) ∈ Z

for all ν ≡ 1 mod m. Since r(qν) → 0 as ν → ∞, we must have r(t) ≡ 0, so

M(t) =
1
a
p(t).

This shows that M(t) is a polynomial, as claimed.

6. Complexity and the degree of M(t)

From now on, the algebraic group G is simple. That is, the center Z(G) is finite
and contains every normal subgroup of G. Recall that the complexity δ is the
minimum codimension of a BH-orbit in G/B. In this section we will complete the
proof of the first assertion of Theorem 1.4 by showing that δ is an upper bound on
the degree of the multiplicity polynomial M(t) defined in (5.21).

6.1. A formula for the complexity. In this section we show that δ has the
simplest conceivable formula. Let g and h be the Lie algebras of G and H. We are
assuming that g is simple. We also invoke Assumption 1.3. That is, we assume that
g = h⊕m, stable under Ad(H), and that there is a nondegenerate Ad(H)-invariant
symmetric form B on m. Hence Ad restricts to a homomorphism

Ad : H −→ SO(m).

Lemma 6.1. Assume that H �= G. Then

ker[Ad : H → SO(m)] = Z(G) ∩ H.

Proof. Containment “⊇” is clear. We prove containment “⊆”. Set

N := ker[Ad : H → SO(m)]

and let n be the Lie algebra of N . We have

n = ker[ad : h → so(m)],

so n is an ideal in h. But [n, m] = 0, so n is in fact an ideal in g. Since g is simple
and not equal to h, we have n = 0. Hence N is a finite normal algebraic subgroup
of H. By [4, 22.1], N is central in H, hence Ad(N) acts trivially on h, as well as
on m. It follows that N is central in G. This completes the proof. �

Let B and BH be Borel subgroups of G and H, respectively. Let U and V be
their respective unipotent radicals. After conjugating, we may assume that

BH = SV, B = TU

with
S ⊂ T, V ⊂ U.

Proposition 6.2. The complexity δ is given by

δ =

{
dimG/B − dimBH if H �= G,

0 if H = G.
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Proof. If H = G, the fact that δ = 0 is clear from the Bruhat decomposition.
Assume from now on that H �= G. We must show that BH has an orbit in G/B
with finite stabilizers. Let w be the element of WG(T ) such that wB ∩ B = T .
Then every element of UwB/B can be uniquely expressed as uwB for u ∈ U . For
v ∈ V, s ∈ S, we have

vs · uwB = v(sus−1)wB.

By uniqueness of expression, vs fixes uwB if and only if v = usu−1s−1. It follows
that the projection BH → S gives an isomorphism from the BH-stabilizer of uwB
to the S-stabilizer of u−1V in the quotient variety U/V . We will show there exists
u ∈ U such that the latter stabilizer is finite.

Denote the Lie algebras of U, V, T, S by u, v, t, s. The tangent space to U/V at
eV is u/v. We have

g/h = t/s ⊕ u/v ⊕ ū/v̄,

where ū = Ad(w)u is the opposite nilradical of u and v̄ is the opposite nilradical of
v.

Since ker[Ad : S → GL(g/h)] is finite by Lemma 6.1, it follows that ker[Ad :
S → GL(u/v)] is finite. This latter kernel is the set of common zeros of the roots
Φ(S, U/V ) of S in u/v (see [4, 8.17]). We have

u/v = (u/v)S ⊕
∑

α∈Φ(S,U/V )

(u/v)α.

A vector in u/v whose α-component is nonzero for every α ∈ Φ(S, U/V ) will there-
fore have finite stabilizer in S. Proposition 6.2 now follows from a basic result:

Lemma 6.3. Let k be an algebraically closed field. Suppose a k-torus S acts on a
smooth irreducible affine k-variety X, fixing a point x ∈ X, so that S acts on the
tangent space TxX at x. If there exists v ∈ TxX having finite stabilizer Sv ⊂ S,
then there exists y ∈ X having finite stabilizer Sy ⊂ S.

This lemma can be proved as follows. Since the torus S acts completely reducibly
on the coordinate ring k[X], the argument of Lemme 1 in [15] shows that there is an
S-equivariant morphism ϕ : X → TxX such that ϕ(x) = 0, and whose differential
dϕx : TxX → TxX is bijective. The set U of points in TxX with finite stabilizers is
open, and nonempty by hypothesis. Since ϕ is dominant, the preimage ϕ−1(U) is
nonempty. If y ∈ ϕ−1(U), then Sy ⊆ Sϕ(y), and the latter stabilizer is finite.

Lemma 6.3 can also be proved using a T -equivariant embedding of X in a linear
representation of T . �

6.2. Degree of Ψα(t). We return now to our rational function

Ψα(t) = fι(t) ·
QGι

υ,u(t)QHι
ς,u(t)

|N̄H(ι, S)F ||Pι,u(t)| .

We have

(6.1) deg |Pι,u(t)| = dimCHι
(u), deg |fι(t)| = dimZι.

From section 5.4 and equation (5.9) we find that

deg Ψα(t) ≤ dimZι + dGι
(u) + dHι

(u) − dimCHι
(u)

= dimZι + 1
2

[
dimCGι

(u) − dimCHι
(u) − rkG − rkH

]
.

(6.2)
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The fixed point spaces gs, hs, ms are the same for any s ∈ Sι; we denote them
by gι, hι, mι. Thus we have an Ad(H)-stable decomposition

gι = hι ⊕ mι

and
dim CGι

(u) − dimCHι
(u) = dimm

u
ι

≤ dimmι

= dimCGι
(1) − dim CHι

(1).
(6.3)

Define
δι := dimZι + dimBGι

− dimBHι
− dim S

= dimZι + 1
2 [dimmι − rkG − rkH].

(6.4)

For example, if ι0 is the minimal element of I(S), then

(6.5) Gι0 = G, Zι0 = Z(G) ∩ S and mι0 = m.

Since Z(G) is finite, Proposition 6.2 implies that

(6.6) δι0 = 1
2 [dim m − rk G − rkH] = δ, if H �= G.

Lemma 6.4. We have deg Ψα(t) ≤ δι, with equality only if u = 1.

Proof. The inequality follows from (6.2) and (6.3), and the last assertion follows
from section 6.1. �

We now seek a bound on deg Ψα which is independent of ι. We will show that
δι ≤ δ, and that equality holds only in rather special circumstances.

Let m′
ι be the sum of the eigenspaces of Ad(s) in m with eigenvalues �= 1, for

any s ∈ Sι. Since detAd(H) = 1 on m, the dimension dimm′
ι is even. We have

m = mι ⊕ m′
ι, the form B is nondegenerate on m′

ι, and Ad : H → SO(m) restricts
to a homomorphism Adι : Hι → SO(m′

ι).

Lemma 6.5. For every ι ∈ I(S) we have δι ≤ δ. Moreover, if H �= G, then the
following are equivalent:

(1) δι = δ;
(2) dim(Zι) = 1

2 dim m′
ι;

(3) Adι(Zι) is a maximal torus in SO(m′
ι).

When these hold, the derived group of Hι acts trivially on m′
ι.

Proof. If H = G, then δ = 0 and

δι = dimZι − dim S ≤ 0.

From now on assume H �= G. From (6.4) and (6.6), we have

(6.7) δ − δι = 1
2 dimm′

ι − dimZι.

Now, the group
Nι := ker[Adι : Zι −→ SO(m′

ι)]
is finite. Indeed, since Zι ⊂ Z(Gι), it follows that Nι centralizes mι, as well as m′

ι.
Hence we have

Nι ⊆ ker[Ad : H −→ SO(m)] = Z(G) ∩ H,

the latter equality being from Lemma 6.1. Hence Nι ⊂ Z(G), and the latter is
finite since G is simple.
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Since Ad(Z◦
ι ) is a torus in SO(m′

ι) and 1
2 dim m′

ι is the dimension of a maximal
torus in SO(m′

ι), this proves that both sides of (6.7) are ≥ 0 and that (1)–(3) are
equivalent.

For the last assertion, recall that Zι ⊂ Z(Hι). If (1)–(3) hold, then Adι(Hι)
centralizes a maximal torus in SO(m′

ι), hence is contained in that torus. �

With this lemma, the first assertion of Theorem 1.4 has been proved.

6.3. A remark on the multiplicity formula. The formula (5.21), as written,
contains more terms than are necessary. For, if we write

Ψα(t)Θα(t) = Pα(t) + Rα(t),

where Pα(t) is a polynomial and deg Rα(t) < 0, then

M(t) =
∑
α

Pα(t) and
∑
α

Rα(t) = 0,

since M(t) is a polynomial. From (5.17) and Lemma 6.4 we have deg Pα ≤ δι,
where α = (ι, u, υ, ς). It follows that

(6.8) 〈RG
T,χ, RH

S,η〉HF = M(q) =
∑
α

Pα(q),

where the sum is over just those α = (ι, u, υ, ς) such that δι ≥ 0.

7. The leading term of M(t)

We have shown that the multiplicity polynomial M(t) has the form

M(t) = Atδ + (lower powers of t).

In this section we find an explicit and effective formula for the leading term A of
M(t). Recall from (5.21) that

M(t) =
∑
α

Ψα(t)Θα(t),

where α runs over quadruples (ι, u, υ, ς) as in (5.19),

Ψα(t) = fι(t) ·
QGι

υ,u(t)QHι
ς,u(t)

|N̄H(ι, S)F ||Pι,u(t)|
and

Θα(t) = 〈χυ, ης〉ZF
ι

+
∑

J⊆I(ι,S)F

(−1)|J|〈χυ, ης〉ZF
J

fJ (t)
fι(t)

.

By Lemmas 6.4 and 6.5, only quadruples α with u = 1 and δι = δ contribute to
the leading term; henceforth we assume α is of this form. As a power series in t,
we then have

Ψα(t) = Aαtδ + (lower degree terms),
where

(7.1) Aα = [ZF
ι : Z◦F

ι ] · (−1)rk(Gι)+rk(T )+rk(Hι)+rk(S)

|N̄H(ι, S)F | .

At first glance, each function Θα(t) could contribute many terms to A, coming
from various ι′ < ι with dim Zι′ = dimZι, since Zι may be disconnected. We now
show that in fact Θα(t) contributes only one term.
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Lemma 7.1. If δι = δ and ι′ < ι, then dim Zι′ < dimZι.

Proof. If H = G, we have δι = dimZι − dimS ≤ 0 = δ with equality iff Zι = S.
The lemma holds since S is connected.

Now assume H �= G. Suppose δι = δ and ι′ < ι, yet dimZι′ = dim Zι. Then

(7.2) Z◦
ι ⊆ Zι′ ⊂ Zι.

From Lemma 6.5, the image Adι(Zι) is a maximal torus in SO(m′
ι). It follows that

Adι(Z◦
ι ) = Ad(Zι).

Thus, for each z ∈ Zι there is z0 ∈ Z◦
ι such that

z1 := zz−1
0 ∈ ker[Adι : Zι → SO(m′

ι)].

By Lemma 6.1, we have z1 ∈ Z(G) ∩ H. Hence

(7.3) z = z0z1 ∈ Z◦
ι · (Z(G) ∩ H).

We have shown that

(7.4) Zι = Z◦
ι · (Z(G) ∩ H).

Now Sι is stable under multiplication by Z(G) ∩ H. Moreover, Sι is open in Zι,
so Sι meets some connected component of Zι in an open dense set. But then (7.4)
implies that Sι meets every connected component of Zι in an open dense set.

Likewise, Sι′ meets some component of Zι′ in an open dense set. By (7.2),
every such component of Zι′ is also a component of Zι. Therefore Sι and Sι′ meet
a common component of Zι in a dense open set. This implies that Sι ∩ Sι′ is
nonempty; hence ι = ι′, contradicting ι′ < ι. �

As an aside, we mention the following consequence of (7.4) which simplifies our
eventual formula for A when G is adjoint.

Lemma 7.2. Suppose G is simple adjoint. If δι = δ, then Zι is connected.

Return now to Θα(t). For each J ⊆ I(ι, S), the subgroup ZJ is contained in
some Zι′ with ι′ < ι. Lemma 7.1 implies that

deg fJ (t) < deg fι(t),

which shows that the leading term of Θα(t) has the following simple form.

Corollary 7.3. Let α = (ι, 1, υ, ς) be a quadruple appearing in M(t) with δι = δ.
Then

Θα(∞) = 〈χυ, ης〉ZF
ι

.

From (7.1) and Corollary 7.3 we get the following expression for the leading term
A.

Proposition 7.4. The leading term A of M(t) in Theorem 1.4 is given by A =∑
ι Aι, where ι runs over those ι ∈ I(S)F with δι = δ, and

Aι = (−1)rk(Gι)+rk(T )+rk(Hι)+rk(S) · |Z
F
ι /Z◦F

ι |
|N̄H(ι, S)| ·

∑
υ,ς

〈χυ, ης〉ZF
ι

.

In the last summation, υ and ς run over j−1
Gι

(cl(T, G)) and j−1
Hι

(cl(S, H)), respec-
tively.
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As a simple illustration of Proposition 7.4, we show how it reduces to the Deligne-
Lusztig inner-product formula [8, thm. 6.8] when G = H. For ι ∈ I(S), we have
then

δι = dimZ(Gι) − dim S ≤ 0 = δ

with equality iff Gι = S = Hι. This means ι is the maximal element of I(S)F , and
M(t) = A = Aι is the inner product 〈RG

T,χ, RG
S,η〉GF .

By Proposition 7.4, if T is not GF conjugate to S, then j−1
Gι

(cl(T, G)) = ∅, so
A = 0. Otherwise we may take S = T , and the fiber of jGι

over cl(S, G) is the
singleton {υ} corresponding to the class of S in itself. We have

χυ =
∑

w∈WG(S)F

wχ, ηυ =
∑

w∈WG(S)F

wη, N̄G(ι, S)F = WG(S)F ,

and the result:

A =
〈χυ, ηυ〉SF

|WG(S)F |
is the original Deligne-Lusztig formula for 〈RG

S,χ, RG
S,η〉GF .

8. Optimality

Recall that G is simple. In this section we show that the degree δ is optimal. We
may assume that H �= G. Let T ⊂ G and S ⊂ H be arbitrary F -stable maximal
tori. We will show that for sufficiently large q, there are characters χ ∈ Irr(TF )
and η ∈ Irr(SF ) such that the leading coefficient A is nonzero. In fact, we can take
η to be the trivial character.

For each ι ∈ I(S)F with Aι �= 0, the fiber j−1
Gι

(cl(T, G)) is nonempty. This means
that Zι is GF -conjugate to a subgroup Z̃ι ⊂ T . There are only finitely many of
these subgroups Z̃ι. Recall from (6.5) that ι0 ∈ I(S)F is the minimal element, for
which Zι0 = Z(G) ∩ S. If dimZι = 0 and δι = δ, then Lemma 7.1 implies that
ι = ι0. Hence, if ι �= ι0, the torus T/Z̃◦

ι has strictly smaller dimension than that of
T , so that

∣∣∣Irr (
TF /Z̃◦F

ι

)∣∣∣ is a polynomial in q of degree strictly less than dim T .

Hence for sufficiently large q there are characters χ ∈ Irr(TF ) which are trivial on
ZF

ι0 and nontrivial on every Z̃F
ι for ι �= ι0. We call these χ very regular. For very

regular χ and ι such that Aι �= 0, we have

(8.1) 〈χυ, 1〉ZF
ι

=

{
1 if ι = ι0,

0 if ι �= ι0.

It follows that for χ very regular, and η = 1, the coefficient A of tδ in M(t) is
given by

(8.2) A = εG(x)εH(y),

where x ∈ cl(T, G) and y ∈ cl(S, H).
Let ϑ be the automorphism of WH induced by F and let ψ be the character of

an irreducible representation of 〈ϑ〉 � WH . For each y ∈ WH , choose an F -stable
torus Sy in H such that y ∈ cl(Sy, H). We have then a class function RH

ψ of HF

defined by

RH
ψ =

1
|WH |

∑
y∈WH

ψ(ϑy)RH
Sy,1.



ON THE RESTRICTION OF DELIGNE-LUSZTIG CHARACTERS 593

For example, the trivial (1) and sign (εH) characters of WH extend to 〈ϑ〉� WH

(trivially on ϑ). It is known (cf. [5, 7.6]) that RH
1 = 1H and RH

εH
= StH are

the trivial and Steinberg characters of HF , respectively. For very regular χ, (8.2)
implies that

(8.3) 〈RG
T,χ, RH

ψ 〉HF = εG(x)〈εH , ψ〉WH
· qδ + (lower powers of q).

In particular, we have

〈εG(x)RG
T,χ, StH〉HF = qδ + (lower powers of q),

while 〈εG(x)RG
T,χ, 1H〉HF has degree < δ. This last result is to be expected, in view

of the results in [2] and [17].

9. Restriction from SO2n+1 to SO2n.

We return to the situation at the beginning of the introduction. So p > 2 and
(V, Q) is a (2n + 1)-dimensional quadratic F-space, defined over f, with Frobenius
F . Fix v ∈ V F with Q(v) �= 0, and let U be the orthogonal space of v in V . We
take

G = SO(V ), H = Gv = SO(U),

with f-structure on both groups induced from that on V . Assumption 1.3 holds:
we may identify the quadratic spaces (m, B) = (U, Q).

Let T , S be F -stable maximal tori in G and H respectively, and let χ ∈ Irr(TF ),
η ∈ Irr(SF ) be characters, which for the moment are arbitrary.

We have

δ = dimBG − dimBH − dim rk H = n2 − (n2 − n) − n = 0.

From now on, we only consider ι ∈ I(S)F with δι = 0. Since G is adjoint, each
such Zι is connected, by Lemma 7.2. Proposition 7.4 gives the multiplicity formula

(9.1) (−1)rk T+rk S〈RG
T,χ, RH

S,η〉HF =
∑

ι∈I(S)F

δι=0

(−1)rk(Gι)+rk(Hι)

|N̄H(ι, S)| ·
∑
υ,ς

〈χυ, ης〉ZF
ι

,

where υ and ς run over j−1
Gι

(cl(T, G)) and j−1
Hι

(cl(S, H)), respectively.
The connectedness of Zι implies that −1 is not an eigenvalue of any s ∈ Sι. The

last assertion of Lemma 6.5 implies that s ∈ Sι has distinct eigenvalues on V/V s.
It follows that

(9.2) Gι = SO(V s) × Zι, Hι = SO(Us) × Zι.

Note that dim V s is odd, say dim V s = 2a + 1.
The decompositions (9.2) imply that if two F -stable maximal tori in GF

ι are
GF -conjugate, then they are GF

ι -conjugate, and likewise for H. In other words, we
have

|j−1
Gι

(cl(T, G))| · |j−1
Hι

(cl(S, H))| ≤ 1.

Hence the inner sum of (9.1) has at most one term.
To make this precise, we recall that tori in orthogonal groups are described

by pairs (λ, λ′) of partitions. We write partitions as λ = (jλj ), meaning that
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λ has λj parts equal to j, and set |λ| =
∑

j jλj . We have pairs of partitions
(ν, ν′), (λ, λ′), (µ, µ′) such that

ZF
ι �

∏
j

(f×j )νj × (f12j)
ν′

j , |ν| + |ν′| = n − a,

TF �
∏
j

(f×j )λj × (f12j)
λ′

j , |λ| + |λ′| = n,

SF �
∏
j

(f×j )µj × (f12j)
µ′

j , |µ| + |µ′| = n.

(9.3)

We have |j−1
Gι

(cl(T, G))| · |j−1
Hι

(cl(S, H))| = 1 precisely when

(9.4) νj ≤ λj , µj and ν′
j ≤ λ′

j , µ
′
j

for all j. We assume (9.4) holds from now on. Note that if T and S are anisotropic,
then λj = µj = νj = 0 for all j.

We count the number of ι in the sum (9.1) giving rise to a fixed pair of partitions
(ν, ν′). For s ∈ SF

ι , consider the components (sj1, . . . , sjµj
; s′j1, . . . , s

′
jµ′

j
) of s in the

jth block
(f×j )µj × (f12j)

µ′
j ⊂ SF .

Then ι is determined by the pair of subsets

{k ∈ [1, µj ] : sjk = 1}, {k′ ∈ [1, µ′
j ] : s′jk′ = 1}.

It follows that there are (
µ

ν

)(
µ′

ν′

)
elements ι ∈ I(S)F giving rise to (ν, ν′), where(

µ

ν

)
:=

∏
j

(
µj

νj

)
,

(
µ′

ν′

)
:=

∏
j

(
µ′

j

ν′
j

)
.

From equations (2.3) and |j−1
Hι

(cl(S, H))| = 1 we have

(9.5) |N̄H(ι, S)F | =
|WH(S)F |
|WHι

(S)F | =
(

µ

ν

)(
µ′

ν′

) ∏
j

(νj !)(ν′
j !)(2j)

νj (2j)ν′
j .

Using Lemma 3.1 for Gι and Hι, we find that

(9.6) (−1)rk Gι+rk Hι = (−1)rk G+rk H+
∑

ν′
j .

(One can also arrive at (9.6) by decomposing UF into irreducible fZF
ι -modules, and

calculating discriminants.)
Finally, we must calculate the pairing 〈χυ, ης〉ZF

ι
. We may conjugate T and S

to arrange that Zι ⊂ T ∩ S. Then

χυ =
1

|WGι
(T )F |

∑
x∈WG(T )F

(xχ)|Zι
, ης =

1
|WHι

(S)F |
∑

y∈WH(S)F

(yη)|Zι
.

We now assume that χ and η are regular, in the sense that they have trivial
stabilizers in WG(T )F and WH(S)F , respectively.

On the jth block (f×j )µj × (f12j)
µ′

j of SF , we have

η = ηj1 ⊗ · · · ⊗ ηjµk
⊗ η′

j1 ⊗ · · · ⊗ η′
jµ′

k
.
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Likewise, on the jth block (f×j )λj × (f12j)
λ′

j of TF , we have

χ = χj1 ⊗ · · · ⊗ χjλj
⊗ χ′

j1 ⊗ · · · ⊗ χ′
jλ′

j
.

Define
Ij = {k ∈ [1, µj ] : ηjk ∈ Γj · {χj�, χj�

−1}, for some � ∈ [1, λj ]},
I ′j = {k′ ∈ [1, µ′

j ] : η′
jk′ = Γ2j · χ′

j�, for some � ∈ [1, λ′
j ]}.

(9.7)

For every pair of subsets

{k1, · · · , kνj
} ⊂ Ij , {k′

1, · · · , k′
ν′

j
} ⊂ I ′j ,

each of the
(νj)!(ν′

j)!(2j)
νj(2j)ν′

j

conjugates of the character

ηjk1 ⊗ · · · ⊗ ηjkνj
⊗ η′

jk′
1
⊗ · · · ⊗ η′

jk′
νj

contributes exactly once to the pairing 〈χυ, ης〉ZF
ι

, by the regularity assumption
(1.3). It follows that

(9.8) 〈χυ, ης〉ZF
ι

=
∏
j

(
|Ij |
νj

)(|I ′j |
ν′

j

)
(νj)!(ν′

j)!(2j)
νj (2j)ν′

j .

Set
e := (−1)rk G+rk T+rk H+rk S .

Inserting (9.5), (9.6) and (9.8) into (9.1), and summing over all (ν, ν′) satisfying
(9.4), we get

e · 〈RG
T,χ, RH

S,η〉HF =
∑
ν,ν′

(−1)
∑

ν′
j

∏
j

(
|Ij |
νj

)(|I ′j |
ν′

j

)

=
∏
j

⎡
⎣
⎛
⎝ |Ij |∑

νj=0

(
|Ij |
νj

)⎞
⎠ ·

⎛
⎝ |I′

j |∑
ν′

j=0

(−1)ν′
j

(|I ′j |
ν′

j

)⎞
⎠

⎤
⎦

=

{
2r if I ′j is empty for all j,

0 otherwise,

(9.9)

where
r =

∑
j

|Ij |.

If either T or S is anisotropic, then r = 0. This proves Theorem 1.2.

10. Restriction from SO7 to G2

The previous situation had δ = 0. We now consider a case where δ = 1. The
simplest such case is G = G2, H = SL3, which we leave to the reader.

Here we take G = SO7, H = G2, embedded in G via the irreducible 7-dimensional
representation V of G2. We have

δ = 9 − 8 = 1.

We assume p ≥ 5.
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We will calculate the multiplicities 〈RG
T,χ, RH

S,η〉HF , using the formula of section
6.3. We do not need any detailed knowledge of Green functions, beyond the general
facts about their degrees and leading terms that we have already used.

Let α, β be simple roots of a maximal f-split torus S0 in H, with α short. The
nonzero weights of H in V are the short roots of S0. We view the maximal f-split
tori T0 and S0 as

T0 = {(x, y, z) ∈ F
3 : xyz �= 0}, S0 = {(x, y, z) ∈ F

3 : xyz = 1},
in such a way that the coordinate functions e1, e2, e3 on T0 restrict to the roots
2α + β,−α,−α − β on S0. In this realization, the simple co-roots of S0 in H are

α̌(t) = (t, t−2, t), β̌(t) = (1, t, t−1),

and the corresponding simple reflections rα, rβ in the Weyl group WH act by

rα · (t1, t2, t3) = (t−1
3 , t−1

2 , t−1
1 ), rβ · (t1, t2, t3) = (t1, t3, t2).

Since S0 contains regular elements in T0, it follows that WH is a subgroup of WG.
If WG is realized as the group of the cube, then WH is the subgroup preserving a
diagonal of the cube; as coset representatives for WG/WH we may take the identity
and each coordinate sign change.

Let T, S be F -stable maximal tori in G and H, corresponding to the conjugacy
classes of x ∈ WG and y ∈ WH , respectively. Let χ ∈ Irr(TF ), η ∈ Irr(SF ).

We will use the refined multiplicity formula of section 6.3. We first tabulate the
pairs (ι, u) in H, with ι ∈ I(S0) and u ∈ Hι, for which

(10.1) dimZι + dGι
(u) + dHι

(u) − dimCHι
(u) ≥ 0.

We find four types as shown:
type ι u

a (1, 1, 1) 1, u0

b (1, t, t−1), tq = t �= ±1 1
c (1, t, t−1), tq = t−1 �= ±1 1
d regular 1

The middle column shows a typical element in S0 for each type of ι. There can be
more than one ι of the same type. Here u0 ∈ HF is a long root element, which has
Jordan partition 1322 on V .

From equation (5.18), we have

M(q) = Ma(q) + Mb(q) + Mc(q) + Md(q),

where each term on the right is the sum∑
ΨαΘα

over those α whose ι component is H-conjugate to an ι of the corresponding type
a, b, c, d in the table above. Taking the polynomial part of each sum, as in section
6.3, we have

(10.2) M(q) = Pa(q) + Pb(q) + Pc(q) + Pd(q).

We now calculate each of the four terms on the right side of (10.2).
Type a: The maps jGι

and jHι
are the identity. The centralizers of u0 in G

and H are both connected. Let φG, φH be the Springer representations of WG and
WH corresponding to u0, let ρG, ρH be the reflection representations, and let εG,
εH be the sign representations.
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From [5, 13.3], we find that φG is the unique two-dimensional representation of
WG = S3 � {±1}3 which is irreducible on S3 and nontrivial on {±1}3, and φH is
the one-dimensional character of WH given by φH(rα) = −1, φH(rβ) = +1.

In the following calculation we write R1 ∼ R2 for rational functions Ri such that
deg(R1 − R2) < 0. We have

Ma(q) =
QG

T (1)QH
S (1)

|HF | +
QG

T (u0)QH
S (u0)

|CH(u0)F | .

The u0 term has degree zero, so we may replace it by its leading term:

Ma(q) ∼ QG
T (1)QH

S (1)
|HF | + φG(x)φH(y).

Since
|TF | = det(q − x) = q3 − ρG(x)q2 + · · · ,

|SF | = det(q − y) = q2 − ρH(y)q + · · · ,

it follows that

εG(x)εH(y)
QG

T (1)QH
S (1)

|HF | =
[GF : TF ]p′ · [HF : SF ]p′

|HF |

=
(q6 − 1)(q4 − 1)(q2 − 1)

q6|TF ||SF |
∼ q + ρG(x) + ρH(y).

We get

(10.3) Pa(q) = εG(x)εH(y) [q + ρG(x) + ρH(y)] + φG(x)φH(y).

Type b: For ι ∈ I(S)F of type b, the elements of SF
ι are H-conjugate to elements

of the form s = (1, t, t−1) ∈ S0 for some t ∈ f×, t2 �= 1. We have

Gι = SO3 × GL2, Hι = GL2.

The stabilizer W ′
Hι

of s in WH is generated by the reflection

r0 := rαrβrαrβrα ∈ WH .

The number of ι ∈ I(S)F of type b is given by

(10.4) νb(y) :=

⎧⎪⎨
⎪⎩

3 if y = 1,

1 if [y] = [r0],
0 otherwise,

where [·] denotes a conjugacy class in WH . We have

νb(y)
|N̄H(ι, S)F | = νb(y) ·

|CW ′
Hι

(y)|
|CWH

(y)| =
1
2

for y ∈ {1, r0}.
The roots of T0 vanishing on s are e1, e2 + e3. The corresponding reflections

r1, r2 ∈ WG generate the stabilizer W ′
Gι

of s in WG. For s ∈ SF
ι , the element ys of

section 2 is ys = 1. Hence, the mapping

jGι
: H1(F, W ′

Gι
) → H1(F, WG)

of (2.2) is induced by the inclusion W ′
Gι

↪→ WG; its image consists of the four
classes in WG represented by elements in W ′

Gι
, as shown in the following table:
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H1(F, W ′
Gι

) 1 r1 r2 r1r2

H1(F, WG) [13,−] [12, 1] [12,−] [2, 1]
.

Set
Wb := W ′

Gι
× W ′

Hι
.

Using section 7 and taking (10.4) into account, it follows that

(10.5) Pb(q) = 1
2εG(x)εH(y)〈χx, ηy〉ZF

ι

if (x, y) is (WG × WH)-conjugate to an element of Wb, and Pb(q) = 0 otherwise.
Here we have written χx instead of χυ, where {υ} = j−1

Gι
([x]), and likewise for ηy.

Type c: For ι ∈ I(S)F of type c, the elements of SF
ι are H-conjugate to elements

of the form s = (1, t, t−1) ∈ S0 for some t ∈ f12, t2 �= 1. We have

Gι = SO3 × U2, Hι = U2.

The groups
W ′

Gι
= 〈r1, r2〉, W ′

Hι
= 〈r0〉

are as in type b. The number of ι ∈ I(S)F of type c is given by

(10.6) νc(y) :=

⎧⎪⎨
⎪⎩

3 if y = −1,

1 if [y] = [−r0],
0 otherwise.

As before, we have

νc(y)
|N̄H(ι, S)F | = νc(y) ·

|CW ′
Hι

(y)|
|CWH

(y)| =
1
2
,

now for y ∈ {−1,−r0}.
Let r be the reflection about e2 − e3. For s ∈ SF

ι , the element ys of section 2 is
ys = r. Hence, the mapping

jGι
: H1(F, W ′

Gι
) → H1(F, WG)

is induced by the map x �→ xr, as shown in the following table:
H1(F, W ′

Gι
) 1 r1 r2 r1r2

H1(F, WG) [12,−] [2, 1] [1, 12] [−, 13]
.

Set
Wc := W ′

Gι
r × W ′

Hι
r.

Using section 7 and taking (10.6) into account, it follows that

(10.7) Pc(q) = 1
2εG(x)εH(y)〈χx, ηy〉ZF

ι

if (x, y) is (WG × WH)-conjugate to an element of Wc, and Pc(q) = 0 otherwise.
Again, we have written χx instead of χυ, where {υ} = j−1

Gι
([x]), and likewise for ηy.

Type d: In this case Sι contains regular elements in G, so Hι = Zι = S, and
Gι = CG(S) is a maximal torus in G. Hence Pd(q) �= 0 only if T is GF -conjugate
to CG(S). The mapping S �→ CG(S) is given, in terms of conjugacy classes in WH

and WG, in the following table:
S 1 rα rβ −1 (rαrβ)2 rαrβ

CG(S) [13,−] [2, 1] [12,−] [−, 13] [3,−] [−, 3] .
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Denote the embedding
WH ↪→ WG by y �→ ỹ.

Let
Wd = {(ỹ, y) : y ∈ WH} ⊂ WG × WH .

For (x, y) ∈ Wd, we may assume that T = CG(S). Then

Θα(q) ∼
∑

w∈WG(T )F

v∈WH (S)F

〈wχ, vη〉SF = |WH(S)F |
∑

w∈WG(T )F

〈wχ, η〉SF .

Since
Ψα(t) =

1
|WH(S)F | ,

it follows that

(10.8) Pd(q) =
∑

w∈WG(T )F

〈wχ, η〉SF = 〈χx, η〉SF

if (x, y) is (WG × WH)-conjugate to an element of Wd, and Pd(q) = 0 otherwise.

10.1. Cuspidal multiplicities. From now on we assume that our tori T, S are
anisotropic, and that the characters χ and η are regular. We will make the multi-
plicities computed above more precise.

The elliptic classes in W (Bn) are those of the form [−, λ], where λ is a partition
of n. So in WG we have three elliptic classes:

[−, 3], [−, 12], [−, 13].

The first of these is the Coxeter class and the last is {−1}.
In WH we also have three elliptic classes, represented by the powers

cox, cox2, cox3 = −1

of a Coxeter element cox = rαrβ. Via the embedding WH ↪→ WG, the elements
−1, cox of WH are also the −1 and Coxeter elements of WG.

Let x ∈ cl(T, G), y ∈ cl(S, H). Note that Pb(q) = 0. Combining formulas (10.3),
(10.7), (10.8), we get the multiplicity formula

(10.9) −〈RG
T,χ, RH

S,η〉HF = q + ρG(x) + ρH(y) − φG(x)φH(y) + a(x, y)

where

(10.10) a(x, y) =

⎧⎪⎨
⎪⎩

1
2 〈χ−1, η−1〉ZF

c
− 〈χ−1, η〉ZF

d
if x = y = −1,

−〈χcox, η〉ZF
d

if x = y = cox,

0 otherwise.

Here we have written Zc for Zι, when ι has type c, and likewise for Zd = S. The
numbers

〈χ−1, η−1〉ZF
c

, 〈χ−1, η−1〉ZF
d

, 〈χcox, η〉ZF
d

are calculated explicitly in (10.11), (10.13) and (10.16) below.
We calculate ρG(x) + ρH(y)− φG(x)φH(y) from the character tables of WG and

WH and then set A(x) = a(x, x) for x ∈ {−1, cox} to arrive at the multiplicities in
Table 1.

Note that S−1 has regular characters only for q ≥ 5 (which we have already
assumed), and T−1 has regular characters only for q ≥ 7. For q = 5 we get Table 2,
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y\x [−, 13] = [−1] [−, 12] [−, 3] = [cox]
[cox3] = [−1] q − 7 + A(−1) q − 3 q − 1

[cox2] q − 2 q − 2 q − 2
[cox] q − 4 q q + 2 − A(cox)

Table 1. −〈RG
Tx,χ, RH

Sy,η〉HF for q ≥ 7

y\x [−, 13] = [−1] [−, 12] [−, 3] = [cox]
[cox3] = [−1] - 2 4

[cox2] - 3 3
[cox] - 5 6 or 7

Table 2. −〈RG
Tx,χ, RH

Sy,η〉HF for q = 5

where the dichotomy in the (cox, cox) entry arises from the fact that A(cox) = 0 or
1, depending on χ and η (see below).

The rest of this section is devoted to the explicit calculation of A(−1) and A(cox).
A(−1): We identify

TF
−1 = (f12)

3, SF
−1 = {(x, y, z) ∈ TF

−1 : xyz = 1},

χ = χ1 ⊗ χ2 ⊗ χ3, η = ResSF
−1

(η1 ⊗ η2 ⊗ η3), with χi, ηi ∈ Irr(f12).

Recall that
A(−1) = 1

2 〈χ−1, η−1〉Zc
− 〈χ−1, η〉Zd

.

We have ZF
c = {(1, t, t−1) : t ∈ f12} and

(10.11) 〈χ−1, η−1〉ZF
c

= 2
∑
i<j

〈
χi

χj
+

χj

χi
+ χiχj +

1
χiχj

,
η1

η2
+

η2

η3
+

η3

η1

〉
f12

.

For ι of type d, we have Zd = S−1. The WG-orbit of χ breaks up into four
WH -orbits:

Õ0 = WH · (χ1 ⊗ χ2 ⊗ χ3),

Õ1 = WH · (χ̄1 ⊗ χ2 ⊗ χ3),

Õ2 = WH · (χ1 ⊗ χ̄2 ⊗ χ3),

Õ3 = WH · (χ1 ⊗ χ2 ⊗ χ̄3).

(10.12)

These restrict to WH-orbits O0, . . . ,O3 in Irr(SF
−1). Even though the orbits Õi

consist of WG-regular characters, the characters in Oi need not be WH -regular.
Moreover, it can happen that Oi = Oj for i �= j. In any case, formula (10.8) gives

(10.13) 〈χ−1, η〉ZF
d

= |{i ∈ [0, 3] : η ∈ Oi}|.

We illustrate with q = 7. The unique regular WG-orbit in Irr(TF
−1) contains the

character χ = ζ ⊗ ζ2 ⊗ ζ3, where ζ is a faithful character of f12 � µ8. There are
two WH -orbits of regular characters η, η′ in Irr(SF

−1), distinguished as follows: η
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belongs to the restrictions O1 = O3, and η′ = ResSF
−1

(ζ ⊗ 1⊗ ζ−2) does not extend
to a regular character of TF

−1. Formulas (10.11) and (10.13) give

〈χ−1, η−1〉ZF
c

= 12, 〈χ−1, η−1〉ZF
d

= 2,

〈χ−1, η
′
−1〉ZF

c
= 10, 〈χ−1, η

′
−1〉ZF

d
= 0.

(10.14)

From Table 1 we get

−〈RG
T−1,χ, RH

S−1,η〉HF = 7 − 7 + 1
2 · 12 − 2 = 4,

−〈RG
T−1,χ, RH

S−1,η′〉HF = 7 − 7 + 1
2 · 10 − 0 = 5.

(10.15)

A(cox): Here the only relevant type is d. We identify

TF
cox = f

1
6 = ker[f×6

norm−→ f
×
3 ], SF

cox =
(
f
1
6

)q+1
,

W (Tcox)F = W (Scox)F is cyclic of order six, and acts on TF
cox and SF

cox via Gal(f6/f).
If χ ∈ Irr(TF

cox) and η ∈ Irr(SF
cox) are both regular, and η appears in the restriction

of some Galois conjugate of χ, then the restriction map Irr(TF
cox) −→ Irr(SF

cox) maps
WG · χ bijectively onto WH · η. Formula (10.8) gives

(10.16) A(cox) = 〈χcox, η〉ZF
d

=

{
1 if η = Res(wχ) for some w ∈ Gal(f6/f),
0 otherwise.

Hence the (cox, cox) entry in Table 1 is made precise:
(10.17)

−〈RG
Tcox,χ, RH

Scox,η〉HF =

{
q + 1 if η = Res(wχ) for some w ∈ Gal(f6/f),
q + 2 otherwise.
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