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ON THE RESTRICTION OF DELIGNE-LUSZTIG CHARACTERS

MARK REEDER

1. INTRODUCTION

This paper was motivated by the following restriction problem for representations
of finite orthogonal groups.

Let § be an algebraic closure of a finite field f of cardinality ¢, a power of a prime
p > 2. Let G = SO(V) be the special orthogonal group of a (2n + 1)-dimensional
$-space V with nondegenerate quadratic form @. Assume V and @ are defined
over f, and let F' denote the corresponding Frobenius endomorphisms of V and G.
Fix v € V¥ with Q(v) # 0 and let H be the stabilizer of v in G.

Let 7 € Irr(GT), 0 € Irr(HY) be complex irreducible cuspidal representations of
the respective groups G¥ and H¥ of f-rational points. The problem is to compute
the multiplicity

(m,0)gr = dimHompgr (7, 0)

of ¢ in the restriction of 7 to HF".
Using unpublished work of Bernstein and Rallis (independently) on p-adic or-
thogonal groups, it can be shown that

(myo)gr =0 or 1.

In this paper, we compute (7, 0)gr exactly, when 7 and o are irreducible cuspidal
Deligne-Lusztig representations [§]. We do not rely on the above-mentioned work of
Bernstein and Rallis. Our calculation follows from a qualitative study of restrictions
of Deligne-Lusztig characters for general simple algebraic groups, to be described
later in this introduction.

To state our multiplicity result for orthogonal groups, we first recall the inducing
data. Let T C G, S C H be F-stable anisotropic tori in G and H. There are unique
partitions A = (), p = (j*/) of n (here \;, u; are the number of parts equal to

j) such that
S | (GHRNEEET | (HE
J J

where, for any d > 1, f4 = SFd is the extension of { in § of degree d, and f%j is the
kernel of the norm mapping f;; — f;. The number of parts 3, yi; is even if H is
split, and odd if H is nonsplit.
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Let x € Irr(TF) and 7 € Irr(S*) be irreducible characters of T*" and S* which
are regular in the sense that y and 7 have trivial stabilizers in the respective Weyl
groups We(T)F and Wy (S9)F. We may write

X=®xj,  N=®;n,
where
Xj = X1 @ @ x5, € Irr ((755)%)
each x; is a character of féj, and likewise for 7. Let I'y; ~ Z/2j7 be the Galois
group of fo; /f.

Definition 1.1. We say that x and n intertwine if 1,/ is a I'sj-conjugate of x
for some 1 <j<n, 1 <k<\, 1<E <p;

Note that x and 7 can intertwine even if T 2 S. However, if A and 7 have no
common parts, that is, if A;ju; = 0 for all j, then x and n do not intertwine.

By Deligne-Lusztig induction, we have virtual representations RJQ_X of G and
Rg,n of HY | respectively. By the regularity assumptions on x and 7, these are
actually irreducible characters, up to sign. In fact, we have

(—l)rkGR%X € Irr(GF), (—1)rkHR§{,7 € Irr(HY).

These two irreducible characters are cuspidal, since T and S are anisotropic. We
prove:

Theorem 1.2. Let T and S be anisotropic F-stable maximal tori in G and H,
respectively, and let x € Irr(TF), n € Irr(ST) be regular characters. Then

(_1)rk GJrrkHu%%X7

Rg Ve = 0 if m, x intertwine,
" 1 if 1, x do not intertwine.

If T and S are arbitrary F-stable maximal tori, but x and 7 are still regular,
then the multiplicity is either zero or a power of two; see (@9) below.

The multiplicity result is used in [12] to verify some cases of the conjectures
of [II] describing restrictions from p-adic SOgp41 to SOay, in terms of symplectic
local root numbers and the parameterization of depth-zero supercuspidal L-packets
given in [7].

As already mentioned, Theorem [[2]follows from a qualitative result, in a general
setting, on multiplicities of Deligne-Lusztig representations.

Let G be a a connected simple algebraic group defined over f, and let H be a
connected reductive f-subgroup of G. Fix F-stable maximal tori 7' C G and S C H,
along with arbitrary characters y € Irr(TF) and 5 € Trr(ST).

From this data Deligne and Lusztig [8] construct virtual characters R%X and
Rg{ y on GF and HY | respectively. Let (, )+ be the canonical pairing on virtual

characters of HY'. We are interested in the multiplicity
G
<RT7X’ Rgm>HF7

where R%X is viewed as a virtual character of H¥', by restriction.

Let B and By be Borel subgroups of G and H, respectively, and let § be the mini-
mum codimension of a By-orbit in G/B. The invariant § is called the complexity
of the H-variety G/B. The theory of complexity was first studied for reductive
groups over fields of characteristic zero (cf. [I] and the references therein). In that
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setting, it is proved in [I] that J governs the growth of multiplicities in restric-
tions of algebraic representations. We will show that ¢ also governs the growth of
multiplicities in restrictions of Deligne-Lusztig representations.

Because we are in nonzero characteristic, we need to make an assumption. Let
g, b be the Lie algebras of G and H.

Assumption 1.3. There is an Ad(H)-stable decomposition g = h ® m, and a
nondegenerate symmetric bilinear form B on m, invariant under Ad(H).

This assumption holds if p is a good prime for g and the Killing form of g is
nondegenerate on b [24] 1.5.3]. For G = SOy 1, H = SOy, our assumption holds
for p > 2.

For an integer v > 1, let NI : TF" — TF be the norm map, and let

X =xoNS, " =noN;.
Under Assumption [[.3], we prove the following.
Theorem 1.4. There is a polynomial of degree at most :
M(t)=At° +--- €QJt],
whose coefficients depend on x and n, and an integer m > 1 such that
<R?,X(u>aR§{n(u>>HF” = M(q")

for all positive integers v =1 mod m. The degree § is optimal: if q is sufficiently
large, there exist x,n such that the leading coefficient A is nonzero.

We also give an explicit formula for the leading term A in Theorem [[4 (see
Proposition [[4l). For G = SOny1, H = SOy, we have § = 0, and our explicit
formula for A leads to Theorem[I:2] (see Section[d). Even if § > 0 one can sometimes
use Theorem [[.4] to compute exact multiplicities, by exploiting the polynomial
nature of M(t). In Section [I0] we illustrate this for G = SO7, H = G3, where
0=1.

Our formula for A also allows us to show, for general G and H, and “very regular”
X (see section {), that the multiplicity

(RE.,.Str)pr

of the Steinberg representation Sty is a monic polynomial in g of degree §, while
the multiplicity of the trivial representation

<Rg,x’ 1H>HF

is a polynomial in ¢ of degree strictly less than §. In particular, for G = SOq, 11
and H = SO, we have

<Rg’X’ StH>HF = ].7 <ngx, ]-H>HF - 0,

for very regular y.

To prove Theorem [[4 we use a method introduced by Thoma [27] for the study of
the restriction of irreducible representations from GL,, (f) to GL,_1(f) (where again
0 = 0). In that situation, the Green’s functions giving the character on unipotent
elements were explicitly known. Hagedorn [I3], in his 1994 Ph.D. thesis, showed
how some of Thoma’s methods could be generalized to Deligne-Lusztig characters
for other pairs of classical groups, where the Green’s functions are less explicit. The
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abstract results of Hagedorn gave me the courage to attempt such calculations for
general groups and to obtain closed multiplicity formulas for orthogonal groups.

It is a pleasure to thank Dick Gross for initiating the work in [12] which led to
this paper, for helpful remarks on an earlier version, and for aquainting me with
Hagedorn’s thesis.

The referee read the original version of this paper with care and insight, made
valuable comments and simplified some of the arguments. In particular, the proof
of Lemma BTl given below is due to the referee and is much shorter than the original
one.

Some general notation: The cardinality of a finite set X is denoted by |X]|.
Equivalence classes are generally denoted by [ - ], sometimes with ornamentation.
If g is an element of a group G, we write Ad(g) for the conjugation map Ad(g) :
x+— grg~!, and also write 9T := ¢gTg~! for a subgroup T C G. The center of G is
denoted Z(G) and the centralizer of g € G is denoted Cg(g).

We write ( , )y for the pairing on the space of class functions on a finite group
H, for which the irreducible characters of H are an orthonormal basis. If G,G' D H
are finite overgroups of H and 1,1’ are class functions on G, G’ respectively, then
(,4") g is understood to mean (Y|g, ¥’ |g) i, where |y denotes restriction to H.

2. REMARKS ON MAXIMAL TORI

Let G be a connected reductive algebraic §-group. We assume G is defined over
f and has Frobenius F. If T is a maximal torus in G we denote its normalizer in
G by Ng(T) and write Wg(T) = Ng(T')/T for the Weyl group of T in G. If T is
F-stable, we have

W(T)" = No(T)*/T",

by the Lang-Steinberg theorem.

The reduction formula for Deligne-Lusztig characters (recalled in section @l below)
involves a sum over the following kind of subset of G¥. Fix an F-stable maximal
torus 7' C G, and let s be a semisimple element in GF'. We must sum over the set

Ng(s, T)F :={yeGF: s7 €T}

Note that Ng(s, T)¥, if nonempty, is a union of G x Ng(T)¥ double cosets, where
Gs := Cg(s)° is the identity component of the centralizer C(s) of s in G.

To say that s7 € T is to say that 7T C G, so determining the G x Ng(T)¥
double cosets in Ng(s,T)f amounts to determining the G'-conjugacy classes of
F-stable maximal tori in Gy which are contained in a given G¥-conjugacy class.
Such classes of tori are parameterized by twisted conjugacy classes in Weyl groups
of G, and G.

The aim of this section is to parameterize the GI' x Ng(T)¥ double cosets in
Ng(s,T)F in terms of the fiber of a natural map between twisted conjugacy classes
in the Weyl groups of G5 and . This parameterization will be fundamental to our
later calculations with Deligne-Lusztig characters.

We begin by recalling the classification of F-stable maximal tori in G. See [5]
chap. 3] for more details in what follows. Fix an F-stable maximal torus Ty in
G contained in an F-stable Borel subgroup of G, and abbreviate Ng = Ng(Tp),
Wa = Wa(To).
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Let T(G) denote the set of all F-stable maximal tori in G. Then 7 (G) is a finite
union of GF-orbits. For any T € 7(G), let
Tla = (T v€GF)
denote the G¥-orbit of T. There is g € G such that T = 9Ty. Since T is F-stable,
we have g~ F(g) € Ng. This gives an element
w:=g 'F(9)Ty € We.
The map Ad(g)t = gtg~! is an f-isomorphism
Ad(g) : (To,wF) — (T, F),
where the second component denotes the action of Frobenius under an f-structure.
For any finite group A with F-action, we let H(F, A) denote the set of F-
conjugacy classes in A. These are the orbits of the action of A on itself via (a, b) —
abF(a)~t. Let [b] € H(F, A) denote the F-conjugacy class of an element b € A.

For g, T,w as above, the F-conjugacy class of w is independent of the choice of
g. Hence we have a well-defined class

(T, G) = [w] € H'(F,Wg).
For each w € H'(F,Wg), the set
T.(G) = {T € T(Q): (T, @) = w}

is a single GF-orbit in 7(G), and all GF-orbits are of this form. Thus, the partition
of the set of F-stable maximal tori into G¥-orbits is given by

)= [ T©.
WEH(F,Wg)

Let s € G¥ be semisimple, and let T, be an F-stable maximal torus of Gj
contained in an F-stable Borel subgroup of G, and let W, be the Weyl group of
T, in G. The partition of 7(G,) into G¥-orbits is given, as above, by

TGy)= [ 7T(G).
vEHL(F,Wg,)

If T € T(G), the set of F-stable maximal tori in G which are G¥'-conjugate to
T is a finite union (possibly empty) of G¥'-orbits. We want to describe this union
in terms of F-conjugacy classes in W, . That is, given w € H*(F, W¢), we have

(2.1) LG)NT(Gy) = [] T(Gs
veEM,,

for some subset M,, C H'(F,Wg.), and our task is to find M,,.

The first point is that T is generally not contained in an F-stable Borel subgroup
of G. Let g € G be such that 9T, = Ty, and let 7, :== gF(g)~! have image ys € Wg.
Then

(T, G) = [ys] € H' (F,Wg),
and Ad(g) is an f-isomorphism

Ad(g) : (Ts, F) — (To, ysF).

Now T} is also a maximal torus in ( )G, whose Weyl group
W¢. == Ad(yg )WG
is a subgroup of W, stable under Ad(ys) o
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Define jg, : HY(F,Wg,) — H'(F,Wg) to be the composition of maps

. Ad incl Tys
(2.2) Jjo.: H'(F,Wa,) 29 0t (y r W) 2 B (g P, We) 2 HY(F, We),

where the middle map is induced by the inclusion W, < Wg and 7,, is the
twisting bijection given by 7, [z] = [zys].
Now let T be an arbitrary F-stable maximal torus in Gs. Write T = h, | with
h € Gy, so that k= F(h) € (T, G,). For g € G as above, we have T = "9 ' T,.
Since
gh™'F(hg™") = g(h™ F(h))g~! - gF(9) ™",
it follows that

(2.3) AT, G) = jo. (AT, Gy)).
This proves:
Lemma 2.1. For each w € HY(F,W¢) and T € T,(Gs), we have
T.(GNTG) = [] T(G).
vEjGL (W)
We can also parameterize the GE-orbits in [T]¢ N 7 (Gs) via the mapping
(2.4) No(s, D) ={yeGF: s€ T} — [T¢NT(Gs), ~v—T.

Note that GI acts on Ng(s,T)F by left multiplication, and that (Z4) factors
through the quotient

(2.5) Ne(s, 7)Y := GF\Ng(s,T)".

The action of Ng(T)¥ on Ng(s,T)F by right multiplication commutes with the
GF-action, hence factors through an action on Ng(s, T)F, where T acts trivially.
This gives an action of W (T)¥ on Ng (s, T)F, whose orbits are the GE' x N(T)F-
double cosets in N(s,T)%.

Lemma 2.2. The mapping 2.4]), sending v — 7T, induces a bijection
Ne(s, )" /Wea(T)" = G{\([T]e N T(Gs))

with the property that the stabilizer in Wq(T)E of the class 4 € N(s,T)F is iso-
morphic, via Ad(vy), to Wg,(OT)F.

Proof. The bijectivity is straightforward and left to the reader. Let w € W (T)F,
and let W € Ng(T)¥ be a representative of w. Then

Jw=%5 & Giyi=G{v & Ad(y)we Ng, (7).
This implies the assertion about the stabilizer. O
Combining Lemmas 2] and 222, we get an explicit formula for |[Ng(s, T)F|.
Corollary 2.3. Let w € HY(F,Wg) and T € T,(G). Then the set Ng(s,T)F is

nonempty if and only if the fiber ]61 (w) is nonempty, in which case we have

S (We(T)"|
[Na (s, T)F| = :
uejz;( ) We, (T.)"]
G \W

where, for each v € jésl (w), the torus T, is chosen arbitrarily in T,(G5).



ON THE RESTRICTION OF DELIGNE-LUSZTIG CHARACTERS 579

3. ON THE CENTRALIZER OF A SEMISIMPLE ELEMENT

Let s € G be semisimple. In the previous section we parameterized the set of
GF-conjugacy classes of maximal tori in G which are contained in a given G*'-
conjugacy class, in terms of fibers of the map jg. : H'(F,Wg.) — HY(F,Wg).
To compute this map jg, concretely, we must find an element y; € W such that
cl(Ts, G) = [ys], where Ts € T(Gy) is contained in an F-stable Borel subgroup of
Gs. This amounts to finding the f-isomorphism class of the connected centralizer
Gs.

An elegant formula for y; was given by Carter [6], using the Brauer complex.
Here we explain a different method that is suited to our later computations; namely
we show how the class [ys] can be determined from the effect of F on a “diagonal-
ized” G-conjugate of s. Unfortunately, both the present method, as well as that of
[6] require that Ci(s) be connected. That is, we must assume that Gy = Cg(s).
This holds for any semisimple s € G if G has simply-connected derived group. Our
method generalizes that of Gross [10], who determined C¢(s) when this group is a
torus (over an arbitrary field).

Let ® denote the set of roots of Ty in G. Let ¥ denote the automorphisms of ®
and W induced by F. For a € ® with corresponding reflection s, € W, we have

aoF=qgd ' q, I(Sa) = S$9.a-
Here is our recipe for finding cl(Ts, G). Let t € Ty be a G-conjugate of s, and let
o, ={acd: at)=1}.

Since t has a conjugate in G, there is w € W (not necessarily unique) such that

(3.1) F(t) =1t".
Choose such a w arbitrarily. From (B it follows that

Now choose any positive system ®;” C ®;. Then ([@3.2) implies that wd - ®; is
another positive system in ®;. Being the Weyl group of ®;, the group W, acts
simply transitively on positive systems in ®;, so there is a unique = € W¢, such
that

(3.3) wd - ®f =x- 0f.

Lw, we see that w can be factored uniquely as

Setting y =z~
(3.4) w = zy,

where z € Wg, and yd - & = &/
Since C¢(t) is connected, the group We, is the full stabilizer of ¢ in Wg. This
means that a different choice of w satisfying [B.I]) will change 2, but not y.

Lemma 3.1. With y constructed as above, we have
ol(T., G) = [yl € H'(F, Wa).

Proof. The following proof was provided by the referee; it is shorter than the original
proof. Choose g € G such that § = g7 F(g) € Ng is a representative of y. Then

yF(t) =t* =1,
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which implies that 9t € G¥'. Since Cg(s) is connected, any element of G¥ which is
G-conjugate to s is in fact G¥-conjugate to s. Hence, by multiplying ¢ on the left
by an element of GF', we may assume that s = 9¢.

By definition of y, there is an Ad(y)F-stable Borel subgroup B; C G¢ contain-
ing Ty. Hence 9B; is an F-stable Borel subgroup of G, containing the F-stable
maximal torus 7" := 9Tp. Since T! is G¥'-conjugate to Ty, it follows that

Ty, G) = g7 F(g)] = lyl,

as claimed. 0

4. DELIGNE-LUSZTIG CHARACTERS

Let T € T(G) be an F-stable maximal torus in G, and let x € Irr(T*). The
Deligne-Lusztig character R%X has the following reduction formula [8]: For « unipo-

tent in GI', we have

(4.1) R sw) = S x(rsnQ%, L (u).

YENG(s,T)F
The summation is over the set Ng(s,T)f defined in (Z7H), and for any reductive
f-group H, and S € T(H), the Green function Q¥ on the unipotent set of HY
is defined by

Q4 (u) = Rg, (w).

In this section we describe the summation over Ng(s, T)* in (&I in terms of fibers
of the map jq, studied in the previous two sections.
Breaking the sum (&I)) into Wg(T)-orbits, we have

(4.2) R (su)= Y Q) Y x(v'sv),

vEjgl(w) €O,

where w = cl(T,G), T, is any torus in 7,(Gs), and O, is the Wg(T)¥-orbit in
Ng (s, T)F corresponding to v € jésl (w) as in Lemma 22
By the stabilizer assertion in Lemma[Z.2] the inner sum in (£2]) can be written as
follows. For any v € Ng(s,T)F and x’ € Irr(TF), the value at s of the transported
character
7Y = x o Ad(y™h) € Ter(VTT)

depends only on the image 7 € Ng (s, T)F. We have

_ 1 x

(4.3) YMox(rrsN = Y. x(s),

R (We, (T)"

€0, z€We(T)¥
where 7 on the right side of (3] is an arbitrary element of Ng(s,T)!" such that
7 € Oy.

In our later computations with R%X it will be useful to let s vary in G*' in such a

way that G, is unchanged. Let Z(G) denote the center of G. Forv € HY(F, W¢.),
the function

(4.4) Xv = Z "X

¥€0y
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is well-defined on Z(G,)¥', and we have
(4.5) R (zu)= Y QF(uxo(2), ifG.=0G..

vejighw)

5. MULTIPLICITY AS A POLYNOMIAL

In this section we begin the proof of Theorem [[L4] and will show that the multi-
plicity is given by a polynomial function. Let G be a connected reductive algebraic
group over f. Let H C G be a connected reductive f-subgroup of G, and let S be
an F-stable maximal torus of H.

5.1. Summation on H¥. Suppose we are given a function f : H¥ — C, invariant
under conjugation by H*, with the property that if h € H¥" has Jordan decompo-
sition h = su, then f(h) = 0 unless the conjugacy class Ad(H¥') - s meets S. Our
first aim is to express the sum of f over HF as a sum of rational functions in ¢ over
an index set which does not depend on gq.

Let H% and HYP* be the sets of semisimple and unipotent elements of H. Let
S(HY) and U(HT) be the sets of Ad(HT)-orbits in (H*)F and (H"Y)F| respec-
tively.

By the vanishing assumption on f, we have

(5.1)

A S A0 XS gt

heHF se(H“)F u€(HIPHF

E [AdHT) - g |Ad(HF)~u|f(su).
|HF\ |Ad(HT) sﬁS| s
scSF [u]eU(HE)

The map v — s” induces a bijection
Cu(s)"\Nu(s,8)F = Ad(HY) -sN S,
so that
Nu(s,9)"]
Ad(HFY-sn S| = [N (s, 5)"|
| Ad(H") | Cr ()]
Recalling that
Nu(s,S)F = HE\Ny (s, 9)F,

we get

1
62 g D I0=Y e Y (e 0

heHF seSF [u]eU(HE)

5.2. A partition of S. To this point, the overgroup G has not played a role. Now
G is used to partition the sum over S¥ in (52)), as follows. Let I(S) be an index
set for the set of subgroups
{Gs: se S}
Note that each element of I(S) is determined by a subset of the roots of S in G;
hence I(S) is finite. For ¢ € I(S) let G, be the corresponding connected centralizer,
and let
S, ={sef: G;=G,}.
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Thus, S is finitely partitioned as
II s.
LeI(S)

The F-action on S induces a permutation of I(.S), and we let I(S) be the F-fixed
points in 1(S). Note that if S is nonempty, then « € 1(S)¥.
For . € I(S), we set

H, =(HNG,)®,

which is none other than Hy for any s € S,.
Note that if s € S,, then s € SN Cp(s), which implies that

(5.3) se H, Cd,.
Returning to our sum (5.2)), we now have

f(su)
G e 0= Y Y Y e

heHT W€I(S)F [uleU(HF) seSF

5.3. Restriction of Deligne-Lusztig characters. We now consider the function

f arising in our multiplicity formula. Let H, S be as above, let T" be an F-stable

maximal torus of G, and let x € Irr(TF), n € Irr(ST) be arbitrary characters.
Using the function f : HF — C given by

we have
(5.6) (R, RY e 2 o
heHF
The map

ja, t HY(F,Wg,) — H'(F,Wg)
defined in (Z2]) depends only on Gy, so we set
Jja, = ja., for any s € S,.
We have an analogous map
ju,  HY(F,Wy,) — H'(F,Wg).
Likewise, the sets Ng(s,T)F and Ny (s, S)" depend only on ¢, so we now write
Ng(t, T)F == Ng (s, T)F, Ny (1, 8)F = Ny (s, 9)F,

for s € SE.
Using ([d3) for G and H, along with (ISEI) our multiplicity formula becomes

Q% (u)QY
(57) <RTx’RSn>HF - Z Z |NH L S F||gH Z XU 77(

IS seSF
[ul€U (H,")

where the middle sum runs over v € jg} (c(T,Q)) and ¢ € jﬁ}(cl(S, H)). The
character sums ¥, and 7. are as defined in ([4.4).
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5.4. Green functions. We digress from our multiplicity formula (57) to recall
the polynomial nature of Green functions Q% defined on the unipotent set of G,
for a connected reductive f-group G with Frobenius F' and F-stable maximal torus
T in G.

For u = 1, we have

(5.8) Q7 (1) = eq(w)[GF : TF],,

where [GF : TF], is the maximal divisor of the index [G¥ : T*] which is prime
to p, w € cl(T,G) and eg : Wg — {£1} is the sign character of Wg. Note that
eq(w) = (=1)™ kT 5 7.59].

For u # 1, the Green functions Q% (u) can be expressed as polynomials which are
known explicitly by tables for exceptional groups [3], [I8] and for classical groups
by recursive formulas [I9] which can be implemented on a computer [9]. It will
suffice for us to know the leading terms of these Green polynomials, which can be
expressed in a uniform way.

Let Bg be the variety of Borel subgroups of G, and let B¢ be the variety of u-
fixed points in Bg. The irreducible components of B¢ all have the same dimension,
and we set

de(u) := dim Bg.
Steinberg proved that
(5.9) 2dg(u) = dim Cg(u) — 1k G,

where rk G is the absolute rank of G.
Assume that p is a good prime for G. For each unipotent class [u] € U(G*) and
twisted conjugacy class [w] = ¢ € H(F,Wg), there is a polynomial

Qw,u(t) = Qc,U(t) € Z[tL
of degree at most dg(u), such that

QF (u) = Qu,u(9)

if cl(T, G) = [w] (see [20] and the references therein).
The coefficient of t%¢(") in Q,, . (t) is

tr[w, HQdG(“)(Bg)],

where w acts on the f-adic cohomology of By via the Springer construction (see
[21], [14], [16]).
If we take u = 1, then dg(1) = N is the number of positive roots of G and

(5.10) Qg’l(t) = eq(w)tY + lower powers of t,

which is easily seen to be consistent with (5.5).
Suppose now that we replace F' by F” for some v > 1. The G -class of T is
then represented by
(w)” - 97" € Wg,

where 9 is the automorphism of W¢ induced by F. Suppose v =1 mod m, where
m is a positive integer divisible by the exponent of the finite group Wg x (). This
implies that F¥ = F on W and that (wd)” - 97" = w for all w € We. It follows
that H*(F,Wg) = H(F¥,Wg) and that the class cl(T, G) is the same with respect
to I or F".
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Likewise, the class of v in GF or GF" is determined by the G-conjugacy class
C C G containing u, together with a class in H'(F, Ag(C)) or HY(F¥, Ag(C)),
where Ag(C) is the component group of the centralizer of some F-fixed element
in C. As in the preceding paragraph, we may take m sufficiently divisible so that
FY = F on Ag(C) and that the class of u in G¥ or G corresponds to the same
class in H'(F, Ag(C)). We may choose m so that this holds for every C, since
there are finitely many unipotent classes.

Let Q%V be the Green function for T on G¥". For m sufficiently divisible as in
the previous two paragraphs and ¥ = 1 mod m we have

Q%u(u) = Qw,u(qy)-

(Note the difficulty with the exceptional class in Fs is avoided since our conditions
on m imply that v is odd; see [20, Remark 6.2].)

5.5. A progression of powers of Frobenius. The indices of and terms of the
summations in (B.7) depend on F', and we wish to remove this dependence for
infinitely many powers of F', in order to represent the sum in (B.7) as the value of
a rational function.

There is a positive integer m such that F™ acts trivially on the finite set I(S) and
the divisibility conditions on m from the previous section hold when G is replaced
by G, or H, for every ¢ € I(S5).

In particular, m is divisible by the orders of the component groups A,(u) of the
centralizers in H, of all unipotent elements v € HF for every « € I(S)¥, and F™ is
the identity automorphism on A,(u) for all such ¢ and u. This implies that for each
¢ € I(S)F and [u] € U(HT), there is a polynomial P, ,(t) € Z[t], of degree equal to
dim Cpg, (u), such that

(5.11) Cr, ()™ | = Pu(d”)

for all v = 1 mod m. Moreover, each polynomial P, ,(¢) is of the form |A,(u)| times
a monic polynomial in Z[t].

The above conditions on m also ensure that the indices in the outer two sum-
mations in (5.7), as well as the quantity |Ng (¢, S)F| are unchanged if F is replaced
by FY for v = 1 mod m.

To handle the inner sum, we add more conditions: in the next section we will
define certain subgroups Z; of S, indexed by subsets J C I(S)¥. We also insist that
m be divisible by |Z;/Z5| and that F™ act trivially on Z;/Z5 for each J C I(S)F.

5.6. Character sums. In order to interpret the inner sum of (5.7 as a rational
function, we shall replace each summand S/ by the group ZF', where

(5.12) Z,=Z(G,)NS.
It is easy to check that

Z, C Z(H,),
(5.13) 5. CZ,CS,
G, =Cc(Z,)°.
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Let x,, and 7. be the character sums appearing in (57)). Our aim is to express
the sum

1 -
(5.14) W Z Xo(8)ns(s)
vl sesF
as the value of a rational function.
Define a partial ordering on I(S) by
< = G, CG,.

Equivalently, we have
Let

be the complement of S, in Z,.

Lemma 5.1. For every . € I(S) we have
Y, = U Z.
V<
Proof. Let s € Y,. Then s € S,/ for some ¢/ € I(S), with ¢/ # ¢+, so s € Z,,. Since
Y, C Z,, we have
G, =Cg(Z,)cCcCe(Y,) CGs =Gy,

sot/ <.

Conversely, let s € Z,/, with ' < t. Note that s € Z,. If s ¢ Y,, then s € S,.
This implies that

Gy = CalZ)° C G, =G,

contradicting +/ < ¢. This proves the lemma. O

For a subset J C I(S), let
7, = ﬂ Zyr.

veJ
There is a polynomial f; € C[t] of degree edim Zy such that
fi(g") =25, for all v = 1 modm.
For v > 1, let
NPT 1P NS sF . 8F

be the norm mappings. These are surjective. Set
Xq()”) = Xvo]\/vng7 ng”) = ngoNE‘,
Assume that ¢ € J C I(S)¥. Then Z; is F-stable and
zFczF czG)  nzH,)E.

Both x,, and 7. are defined on the latter group (see [@4])), so we may restrict them
to ZE. Our conditions on m at the end of section ensure that the restricted
norm mapping

NS . zF" . zF
is also surjective. This implies, for all integers v = 1 mod m, that

() ()

<Xv ang >Z5w = <Xv377§>Z§'
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Hence for each J, we have
(5.15) S @ (=) = (o) zr - £1(a7).
zeZ¥"

Let I(¢,S) :={/ € I(S) : ' < ¢}. It now follows from Mobius inversion that the
rational function

(5.16) Ou(t) = <Xva77<>ZF + Z ‘J‘ Xva77<>Z§
JCI(t,S)F

fs(t)
£(t)

has the property that
@L,’U,C(q ZFI/ Z X (V) )
SESF"
for all v = 1mod m. Since dim Z; < dim Z, for all J C I(1,S)¥, we have
(5.17) deg®,, . <O0.

5.7. Multiplicity as a polynomial. We return to our multiplicity formula (G.7).
We have shown that

(5.18) (RG . RY, ) gr = Z\IJ

where « runs over quadruples a = (L7 u,v, g) with
(5.19) e I(S)", [ eUH), vejs (NT.G)), <ejy (S, H)),

O, (t) = 0,4 ¢ (t) is the rational function defined in (5I6) and ¥, (t) is the rational
function defined by

QW) (1)
(5'20) \I/a(t) = fb(t) e , :
[Na (e, )PP (t)]
Here fofu(t) and QF; (t) are the Green polynomials from section B4l and P, , (t) is
the polynomial from (GIT).

If F is replaced by F" with v = 1modm, where m is as in section .0 the
summation indices « are unchanged, so that the rational function

(5.21) M(t) = W, (t)®
has the property that

(5.22) <RT X<u>,R§’,n<u>>Hw = M(q"),

for all v = 1mod m. In particular, M(¢"”) is an integer for all ¥ = 1 mod m.

We next observe that the numerator of each term in M (t) belongs to Z[t], and
the denominator of each term in M(t) is an integer times a monic polynomial in
Z[t]. Hence there is a € Z such that

M(t) = &,
9(t)
where f(t) and g(t) are in Z[t] and ¢(t) is monic. We can therefore write

aM(t) = p(t) +r(t),



ON THE RESTRICTION OF DELIGNE-LUSZTIG CHARACTERS 587

where p(t) € Z[t] and r(t) is a rational function of negative degree. On the other
hand,

r(¢") = aM(¢") = p(¢") = a(RE )s RY o ) e — p(g") €Z
for all v = 1modm. Since r(¢”) — 0 as v — oo, we must have r(t) = 0, so

M(t) = (o)

This shows that M(t) is a polynomial, as claimed.

6. COMPLEXITY AND THE DEGREE OF M (t)

From now on, the algebraic group G is simple. That is, the center Z(G) is finite
and contains every normal subgroup of G. Recall that the complexity ¢ is the
minimum codimension of a By-orbit in G/B. In this section we will complete the
proof of the first assertion of Theorem [[.4] by showing that § is an upper bound on
the degree of the multiplicity polynomial M (t) defined in (B21]).

6.1. A formula for the complexity. In this section we show that J has the
simplest conceivable formula. Let g and h be the Lie algebras of G and H. We are
assuming that g is simple. We also invoke Assumption[I.3] That is, we assume that
g = h@dm, stable under Ad(H), and that there is a nondegenerate Ad(H)-invariant
symmetric form B on m. Hence Ad restricts to a homomorphism

Ad: H — SO(m).
Lemma 6.1. Assume that H # G. Then
ker[Ad : H — SO(m)] = Z(G) N H.
Proof. Containment “2” is clear. We prove containment “C”. Set
N :=ker[Ad : H — S0(m)]
and let n be the Lie algebra of N. We have
n = ker[ad : h — so(m)],

so n is an ideal in h. But [n,m] = 0, so n is in fact an ideal in g. Since g is simple
and not equal to h, we have n = 0. Hence N is a finite normal algebraic subgroup
of H. By [, 22.1], N is central in H, hence Ad(N) acts trivially on b, as well as
on m. It follows that IV is central in G. This completes the proof. O

Let B and By be Borel subgroups of G and H, respectively. Let U and V be
their respective unipotent radicals. After conjugating, we may assume that

By =SV, B=TU
with
SCT, VcU.
Proposition 6.2. The complexity § is given by

5= dim G/B — dim By if H#G,
o if H=G.
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Proof. If H = G, the fact that § = 0 is clear from the Bruhat decomposition.
Assume from now on that H # G. We must show that By has an orbit in G/B
with finite stabilizers. Let w be the element of Wg(T') such that “BN B = T.
Then every element of UwB/B can be uniquely expressed as uwB for u € U. For
v eV, seS, we have

vs - uwB = v(sus ) wB.

By uniqueness of expression, vs fixes uwB if and only if v = usu~'s~!. It follows
that the projection By — S gives an isomorphism from the B H—stablhzer of wuwB
to the S-stabilizer of =1V in the quotient variety U/V. We will show there exists
u € U such that the latter stabilizer is finite.

Denote the Lie algebras of U, V, T, S by u,v,t,s. The tangent space to U/V at
eV is u/v. We have

g/h=t/sdu/odu/o,

where it = Ad(w)u is the opposite nilradical of u and b is the opposite nilradical of
v.

Since ker[Ad : S — GL(g/h)] is finite by Lemma [G.1] it follows that ker[Ad :

S — GL(u/v)] is finite. This latter kernel is the set of common zeros of the roots
O(S,U/V) of Sin u/v (see [4, 8.17]). We have

u/o=o)%e > (u/o).

a€®(S,U/V)

A vector in u/v whose a-component is nonzero for every o € ®(S,U/V') will there-
fore have finite stabilizer in S. Proposition now follows from a basic result:

Lemma 6.3. Let k be an algebraically closed field. Suppose a k-torus S acts on a
smooth irreducible affine k-variety X, fizing a point x € X, so that S acts on the
tangent space T, X at x. If there exists v € T, X having finite stabilizer S, C S,
then there exists y € X having finite stabilizer S, C S.

This lemma can be proved as follows. Since the torus S acts completely reducibly
on the coordinate ring k[X], the argument of Lemme 1 in [I5] shows that there is an
S-equivariant morphism ¢ : X — T, X such that ¢(z) = 0, and whose differential
dp, : T, X — T, X is bijective. The set U of points in 7, X with finite stabilizers is
open, and nonempty by hypothesis. Since ¢ is dominant, the preimage =1 (U) is
nonempty. If y € o= (U), then S, C So(y)» and the latter stabilizer is finite.

Lemma can also be proved using a T-equivariant embedding of X in a linear
representation of 7. O

6.2. Degree of U, (¢). We return now to our rational function

QTu(H)Q™, (1)
[Nn (1, 8)F IIPLu( )|

Va(t) = fu(t) -

We have
(6.1) deg |P, ,(t)] = dim Cq, (u), deg|f.(t)] = dim Z,.
From section [5:4] and equation (5:9) we find that

deg ¥, (t) < dim Z, + dg, (v) + dg, (u) — dim Chy, (u)

(6:2) B | _
=dimZ, + § [dim Cg, (u) — dim Cp, (u) — 1k G — tk H] .
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The fixed point spaces g°, h°, m® are the same for any s € S,; we denote them
by g, H,,m,. Thus we have an Ad(H)-stable decomposition

gL:hL®mb

dim Cg, (u) — dim Cy, (u) = dimm}’
(6.3) < dimm,
= dim CG,, (1) — dim CHL (1)

Define
0, :=dim Z, + dim Bg, — dim By, — dim S

6.4 — _
(64) :dimZL—f—%[dimmL—rkG—rkH].

For example, if ¢¢ is the minimal element of I(S), then

(6.5) G,=G, Z,=7Z(G)NnS andm, =m.
Since Z(G) is finite, Proposition [6.2] implies that
(6.6) 8., = s[dimm — 1k G — rk H] = 6, if H#G.

Lemma 6.4. We have deg U, (t) < §,, with equality only if u = 1.

Proof. The inequality follows from ([6.2) and (6.3]), and the last assertion follows
from section O

We now seek a bound on deg ¥, which is independent of . We will show that
6, <6, and that equality holds only in rather special circumstances.

Let m/ be the sum of the eigenspaces of Ad(s) in m with eigenvalues # 1, for
any s € S,. Since det Ad(H) = 1 on m, the dimension dimm/ is even. We have
m = m, ® m}, the form B is nondegenerate on m,, and Ad : H — SO(m) restricts
to a homomorphism Ad, : H, — SO(m)).

Lemma 6.5. For every v € I(S) we have §, < 8. Moreover, if H # G, then the
following are equivalent:

(1) 6, =9;

(2) dim(Z,) = § dimm;

(3) Ad,(Z,) is a mazimal torus in SO(m)).
When these hold, the derived group of H, acts trivially on m].
Proof. If H =G, then § =0 and

6, =dimZ, —dim S < 0.
From now on assume H # G. From (6.4) and (6.6), we have
(6.7) §—0,=1dimm] —dimZ,.
Now, the group
N, :=ker[Ad, : Z, — SO(m))]
is finite. Indeed, since Z, C Z(G,), it follows that N, centralizes m,, as well as m/.
Hence we have
N, Cker[Ad: H — SO(m)] = Z(G)N H,

the latter equality being from Lemma Hence N, C Z(G), and the latter is
finite since G is simple.
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Since Ad(Zy) is a torus in SO(m]) and 1 dimm] is the dimension of a maximal

torus in SO(m)), this proves that both sides of (1) are > 0 and that (1)—(3) are
equivalent.

For the last assertion, recall that Z, ¢ Z(H,). If (1)—(3) hold, then Ad,(H,)
centralizes a maximal torus in SO(m!), hence is contained in that torus. O

With this lemma, the first assertion of Theorem [[.4] has been proved.

6.3. A remark on the multiplicity formula. The formula (521]), as written,
contains more terms than are necessary. For, if we write

Vo ()Oa(t) = Pa(t) + Ralt),
where P, (t) is a polynomial and deg R, (t) < 0, then

M(t)=> P,(t) and Y Rq(t)=0,

since M (t) is a polynomial. From (5I7) and Lemma [6:4] we have deg P, < 4,,
where a = (1, u,v,s). It follows that

where the sum is over just those o = (¢, u,v,s) such that 6, > 0.

7. THE LEADING TERM OF M (t)
We have shown that the multiplicity polynomial M (¢) has the form
M (t) = At® + (lower powers of t).

In this section we find an explicit and effective formula for the leading term A of
M (t). Recall from (5.2I)) that

M(t) = Z \Iia(t)@a(t)v

where « runs over quadruples (¢, u,v,<) as in (19,

QLR
[N (1, S)FI[Pu(?)]

Va(t) = f.(t)
. fo(1)
t
Oult) = (Xosn)zr + Y (=D (xw,ne) zr J(t) :
JCI(1,S)F ¢
By Lemmas and [6.5] only quadruples o with w = 1 and §, = ¢ contribute to

the leading term; henceforth we assume « is of this form. As a power series in t,
we then have

W, (t) = Aut® + (lower degree terms),
where
(—1)R(G)+K(T) +rk(HL)+1k(S)
N, 5

At first glance, each function ©,(t) could contribute many terms to A, coming
from various ¢/ < ¢ with dim Z,, = dim Z,, since Z, may be disconnected. We now
show that in fact ©,(t) contributes only one term.

(7.1) Aa=1[2] 207
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Lemma 7.1. If 6, =0 and /' <, then dim Z,, < dim Z,.

Proof. If H = G, we have §, = dim Z, — dim S < 0 = § with equality iff Z, = S.
The lemma holds since S is connected.
Now assume H # G. Suppose §, = ¢ and ¢/ < ¢, yet dim Z,, = dim Z,. Then

(7.2) Z, CZy C Z,.
From Lemmal[G.5] the image Ad,(Z,) is a maximal torus in SO(m)). It follows that
Ad,(Z?) = Ad(Z2)).
Thus, for each z € Z, there is 29 € Z; such that
21 =225t € ker[Ad, : Z, — SO(m))].
By Lemma [6.1] we have z; € Z(G) N H. Hence

(7.3) z=z021 € Z, - (Z(G)N H).
‘We have shown that
(7.4) Z, =27 (Z(G)N H).

Now S, is stable under multiplication by Z(G) N H. Moreover, S, is open in Z,,
so S, meets some connected component of Z, in an open dense set. But then (7.4)
implies that S, meets every connected component of Z, in an open dense set.
Likewise, S,, meets some component of Z,, in an open dense set. By (2,
every such component of Z,/ is also a component of Z,. Therefore S, and S,, meet
a common component of Z, in a dense open set. This implies that S, NS, is
nonempty; hence ¢ = ¢/, contradicting " < «. O

As an aside, we mention the following consequence of (.4]) which simplifies our
eventual formula for A when G is adjoint.

Lemma 7.2. Suppose G is simple adjoint. If 6, = §, then Z, is connected.

Return now to ©,(t). For each J C I(¢,S), the subgroup Z; is contained in
some Z,» with +/ < ¢. Lemma [Z.I] implies that

deg f;(t) < deg f.(t),

which shows that the leading term of O,(t) has the following simple form.
Corollary 7.3. Let « = (1,1,v,¢) be a quadruple appearing in M (t) with 6, = 9.
Then
Oq(0) = <Xv777<>ZLF-
From (1)) and Corollary [[3] we get the following expression for the leading term
A.

Proposition 7.4. The leading term A of M(t) in Theorem [[4 is given by A =
>, A,, where v runs over those v € 1(S)¥ with §, = 6, and

A, = (1) (G +IK(T) 4rk(H) k() . |Z_LF/ZLOF\ 'Z<X n)gr

Na(i5)] 2o 2
In the last summation, v and § Tun over ja’l (c|(T,@)) and j;I}(Cl(S, H)), respec-
tively.
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As a simple illustration of Proposition[(.4], we show how it reduces to the Deligne-
Lusztig inner-product formula [8] thm. 6.8] when G = H. For « € I(S), we have
then

0, =dimZ(G,) —dimS <0=94
with equality iff G, = S = H,. This means ¢ is the maximal element of I(S)¥, and
M(t) = A= A, is the inner product (R%X, Rg7n>GF.

By Proposition [Z4] if T is not G conjugate to S, then ja} (cl(T,@G)) = o, so
A = 0. Otherwise we may take S = T, and the fiber of jg, over cl(S,G) is the
singleton {v} corresponding to the class of S in itself. We have

Xv = Z “X N = Z “n, NG(La S)F = WG(S)Fa

weWeg (S)F weWeg (S)F
and the result:
A= <Xva 77’U>i;F
[We(S)F|

is the original Deligne-Lusztig formula for <R§;X’ Rg7,’7>GF.

8. OPTIMALITY

Recall that G is simple. In this section we show that the degree § is optimal. We
may assume that H # G. Let T C G and S C H be arbitrary F-stable maximal
tori. We will show that for sufficiently large g, there are characters x € Irr(TF)
and 7 € Irr(ST) such that the leading coefficient A is nonzero. In fact, we can take
7 to be the trivial character.

For each ¢ € I(S)¥ with A, # 0, the fiber jé}(cl(T, @)) is nonempty. This means
that Z, is GF-conjugate to a subgroup Z, C T. There are only finitely many of
these subgroups Z,. Recall from (6.3) that ¢y € I(S) is the minimal element, for
which Z,, = Z(G)nS. If dimZ, = 0 and ¢, = J, then Lemma [Tl implies that
1 = 19. Hence, if ¢ # 19, the torus T/ Z° has strictly smaller dimension than that of
T, so that ‘Irr (TF / ZfF ) ’ is a polynomial in g of degree strictly less than dimT'.

Hence for sufficiently large ¢ there are characters x € Irr(T*) which are trivial on
ZLIZ and nontrivial on every ZI" for « # 1. We call these x very regular. For very
regular y and ¢ such that A, # 0, we have

1 if ¢ = 1g,

It follows that for y very regular, and 1 = 1, the coefficient A of % in M(t) is
given by

(8.2) A=eq(x)en(y),

where z € cl(T,G) and y € cl(S, H).

Let ¥ be the automorphism of Wx induced by F' and let ¥ be the character of
an irreducible representation of () x Wy. For each y € Wy, choose an F-stable
torus Sy in H such that y € cl(Sy, H). We have then a class function Rg of HF
defined by

1
H _ § H
R1/1 - |WH| ¢(?9y)RSy,l'
yeWn



ON THE RESTRICTION OF DELIGNE-LUSZTIG CHARACTERS 593

For example, the trivial (1) and sign (eg) characters of Wy extend to (9) x Wy
(trivially on ). It is known (cf. [5, 7.6]) that Rf = 1y and R = Sty are
the trivial and Steinberg characters of HY', respectively. For very regular y, [82)
implies that

(8.3) (R%X, R,{ZI>HF = eq(x) (e, V)w, - ¢° + (lower powers of ).

In particular, we have

(eG(x)R%X, Str)pr = ¢ + (lower powers of ),

while <€G({E)R%X, 1g)gr has degree < §. This last result is to be expected, in view
of the results in [2] and [17].

9. RESTRICTION FROM SO3;,11 TO SOq,.

We return to the situation at the beginning of the introduction. So p > 2 and
(V,Q) is a (2n + 1)-dimensional quadratic F-space, defined over f, with Frobenius
F. Fix v € VI with Q(v) # 0, and let U be the orthogonal space of v in V. We
take

G =S0(V), H=G,=50(),
with f-structure on both groups induced from that on V. Assumption [[3 holds:
we may identify the quadratic spaces (m, B) = (U, Q).

Let T, S be F-stable maximal tori in G' and H respectively, and let x € Irr(TF),
n € Irr(ST) be characters, which for the moment are arbitrary.

We have

§ = dim Bg — dim By — dimrk H = n? — (n*> —n) —n = 0.
From now on, we only consider ¢ € I(S)¥ with §, = 0. Since G is adjoint, each

such Z, is connected, by Lemma [[.2l Proposition [[.4] gives the multiplicity formula

(_1)rk(GL)+rk(HL)
a2 mdar

v,S

(9.1) (=) TTSRECRE pr = )
eI(S)F
4,=0
where v and ¢ run over j(_;}(cl(T, G)) and j;lf(cl(S, H)), respectively.
The connectedness of Z, implies that —1 is not an eigenvalue of any s € S,. The
last assertion of Lemma implies that s € S, has distinct eigenvalues on V/V*.
It follows that

(9.2) G, =S80(V*)x Z, H,=SOU?*) % Z,.

Note that dim V* is odd, say dim V* = 2a + 1.

The decompositions ([@.2) imply that if two F-stable maximal tori in GI are
GF-conjugate, then they are GF'-conjugate, and likewise for H. In other words, we
have

g, (UL, G- |, (el(S, H))| < 1.

Hence the inner sum of (@) has at most one term.
To make this precise, we recall that tori in orthogonal groups are described
by pairs (A, \) of partitions. We write partitions as A = (j%9), meaning that
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A has A; parts equal to j, and set [A| = 37, jA;. We have pairs of partitions
(v, "), (A N), (u, ') such that

NI[ )i x (f4)%5, W+ =n—a,
(93) = H A X f2] ’ |)‘| + |)‘/‘ =n,
~H Y x (fL)5, Il + ] = n.

We have |351 (T, @))| - |j;{L (cl(S, H))| = 1 precisely when
(9.4) vi < N\j, [ and V;- < )\;-,u;-

for all j. We assume (@4) holds from now on. Note that if 7" and .S are anisotropic,
then \; = pu; = v; = 0 for all j.

We count the number of ¢ in the sum (@) giving rise to a fixed pair of partitions
(v,1'). For s € SF, consider the components (sj1,. .., Sju,; ity s;ﬂ;) of s in the
5" block

(15" x (f3;)" < 8"
Then ¢ is determined by the pair of subsets
kel sp=1} (el o =1}

It follows that there are
w\ (W
v v

elements ¢« € 1(S)¥ giving rise to (v,v’), where

1 N T (1
() =1m() () -10()
J J
From equations (2.3]) and UH (cl(S H))| =1 we have

05 |Nals)F = O] (1) (4) e e

W, (S)F| v)\V') %
Using Lemma Bl for G, and H,, we find that
(96) (_1)rkGL+rkH,, — (_1)rkG+rkH+Zy;.

(One can also arrive at ([@.8]) by decomposing U into irreducible §ZF-modules, and
calculating discriminants.)

Finally, we must calculate the pairing (x., 77§> . We may conjugate T and S
to arrange that Z, C T'NS. Then

1 N B 1 v
X’U:W Z "Xz, ﬂc—w Z (n)

zeWa(T)F yeWH (S)F

Z,-

We now assume that y and 7 are regular, in the sense that they have trivial
stabilizers in W (T)F and Wy (S)F, respectively.
On the j** block ()" x (f3; )i of SF, we have

N=11 @ @ Ny @My @ @1
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Likewise, on the j** block ()% x (%j)/\é of TF, we have
X=X1® @ Xja, ®Xj1 @+ @ X
Define
.7 I ={ke[Lpu]: nk €Ty {xjexze '}, for some £ € [1,\]},
I={k e [1,u)]: My =Taj-Xjp, forsome £ e [1,\]}.
For every pair of subsets
{kv, -k} C Ly Ry, R, C TG,

each of the

()N w)(29)"7 (2)"
conjugates of the character

Niks @+ @ Njk, ®77§-k/1 ®---®77;-ij

contributes exactly once to the pairing <XU,’]7§>ZLF, by the regularity assumption
(@3). It follows that

0.9 ez =L () () eangrea oyt

Set
e = (_1)rkG+rkT+rkH+rkS'

Inserting (@A), (@8) and ([@8) into @), and summing over all (v,v') satisfying
@.4), we get

e (R§  RE Ve =3 (-1)2 ] (g) (g)

v,v! J
|11 751 /
I; v |I|
99) T (2 (0] (e ()
Fi vj=0 > J /=0 J

if I’ is empty for all j,
otherwise,

r=> I
i

If either T" or S is anisotropic, then r = 0. This proves Theorem

where

10. RESTRICTION FROM SO7 TO Go

The previous situation had § = 0. We now consider a case where § = 1. The
simplest such case is G = G2, H = SL3, which we leave to the reader.

Here we take G = SO7, H = G5, embedded in G via the irreducible 7-dimensional
representation V' of G5. We have

0=9-8=1.

We assume p > 5.
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We will calculate the multiplicities (RZ |, R, )+, using the formula of section
We do not need any detailed knowledge of Green functions, beyond the general
facts about their degrees and leading terms that we have already used.

Let «, 3 be simple roots of a maximal f-split torus Sy in H, with a short. The
nonzero weights of H in V are the short roots of Sy. We view the maximal f-split
tori Ty and Sy as

To ={(z,y,2) € 3+ wyz # 0}, So={(z,y,2) €F: zyz =1},

in such a way that the coordinate functions e, ez, e3 on Ty restrict to the roots
2a + B, —a,—a — B on Sy. In this realization, the simple co-roots of Sy in H are

at) = (t,t72,t),  B(t) = (L, t,t7h),
and the corresponding simple reflections r,, 7g in the Weyl group Wy act by

ro - (tito ts) = (51657 800), g (hhta,ts) = (tsts, bo).

Since Sy contains regular elements in Ty, it follows that Wy is a subgroup of Wg.
If W is realized as the group of the cube, then Wy is the subgroup preserving a
diagonal of the cube; as coset representatives for W /Wy we may take the identity
and each coordinate sign change.

Let T',.S be F-stable maximal tori in G and H, corresponding to the conjugacy
classes of z € Wg and y € Wy, respectively. Let x € Irr(TF), n € Irr(ST).

We will use the refined multiplicity formula of section We first tabulate the
pairs (¢,u) in H, with ¢ € I(Sy) and u € H,, for which
(10.1) dim Z, + dg, (u) + dg, (u) — dim Cpy, (u) > 0.
We find four types as shown:

[ type | 2 [ v |

a (1a 1) 1) 17 Uuo
b (1, t,t7 1), t9=t+£+1 1
c | (Lt ™h, tr=t"t££+1] 1
d regular 1

The middle column shows a typical element in Sy for each type of ¢«. There can be
more than one ¢ of the same type. Here uy € H is a long root element, which has
Jordan partition 1322 on V.

From equation (B.I8]), we have

M (q) = Ma(q) + My(q) + M.(q) + Ma(q),

where each term on the right is the sum

Z\I/aea

over those o whose ¢ component is H-conjugate to an ¢ of the corresponding type
a, b, c,d in the table above. Taking the polynomial part of each sum, as in section

63 we have
(10.2) M (q) = Pa(q) + Po(q) + Pe(q) + Pa(q).

We now calculate each of the four terms on the right side of (I0.2)).

Type a: The maps jg, and jg, are the identity. The centralizers of uy in G
and H are both connected. Let ¢, ¢y be the Springer representations of Wg and
Wy corresponding to ug, let pg, pg be the reflection representations, and let eq,
ex be the sign representations.
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From [ 13.3], we find that ¢¢ is the unique two-dimensional representation of
We = S3 x {£1}? which is irreducible on S3 and nontrivial on {£1}3, and ¢y is
the one-dimensional character of Wy given by ¢p(r.) = —1, ¢u(rs) = +1.

In the following calculation we write Ry ~ Ry for rational functions R; such that
deg(R; — R2) < 0. We have

|HT| |Cr (uo) ¥
The ugy term has degree zero, so we may replace it by its leading term:

_Qgmet
|HF|

+

Ma(q) + ¢c(2)on(y)-

Since
ITF| = det(q — =) = ¢* — pa(2)* + -,
|ST| = det(q—y) =¢* — pu(y)a+--,

it follows that
Qg(l)Qg(l) [GF : TF]p’ ’ [HF : SF]p’

ec()en(y) [HF| = HF|
@ -D -1 -1
B q®|T*]|S*|
~q+ pc(z) +pu(y).
We get
(10.3) Po(q) = ec(@)en(y) [a + pa(x) + pu(y)] + dc(x)du(y).

Type b: For . € I(S)F of type b, the elements of S are H-conjugate to elements
of the form s = (1,t,t7!) € Sy for some t € §*, t? # 1. We have

GL:SOg XGLQ, H, = GL>.
The stabilizer Wy; of s in Wy is generated by the reflection
T = TaTgraTsTa € WH.

The number of ¢ € I(S)F of type b is given by

3 ify=1,
(10.4) w(y) =<1 if [y] = [ro],
0 otherwise,

where [] denotes a conjugacy class in Wy. We have

w(y) ) |CW,’1L )| 1
a5 " o, ]

ICwu ()l 2
for y € {1,r0}.

The roots of Ty vanishing on s are ej,es + es. The corresponding reflections
r1,12 € Wg generate the stabilizer Wé‘, of s in Wg. For s € SF', the element y, of
section @lis y, = 1. Hence, the mapping

ja,  HY(F,Wg,) — H'(F,Wg)

of ([22) is induced by the inclusion W < Wg; its image consists of the four
classes in W represented by elements in Wél’, as shown in the following table:
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Hl(F,WéL) 1 L T2 172 ‘
Hl(F7 WG) [135 _} [12v 1] [125 _} [25 1] ‘ .

Set

Wb = WéL X WI/{L'
Using section [ and taking ([I0.4]) into account, it follows that
(10.5) Py(q) = sea(x)em (y)(Xasny) 27

if (z,y) is (Wg x Wy)-conjugate to an element of Wy, and Py(q) = 0 otherwise.
Here we have written x, instead of x,, where {v} = ]5}([$]), and likewise for 7,,.

Type c: For . € I(S)F of type c, the elements of SI" are H-conjugate to elements
of the form s = (1,¢,t71) € Sy for some ¢ € f, 2 # 1. We have

GLZS03><U2, HL:UQ.

The groups
Wg, = (ri,ra), Wy, = (ro)
are as in type b. The number of ¢+ € I(S)F of type c is given by

3 ify=-—1,
(10.6) ve(y) :=q1 i [y] = [-ro],
0 otherwise.
As before, we have
ve(y) ICwy, (W)l 1

Y = (y) e =
INu (e $)F 7 [Cw ()] 2
now for y € {—1, —ro}.
Let r be the reflection about ey — e3. For s € SE, the element y, of section [is
ys = r. Hence, the mapping

ja, : HY(F,W§,) — HY(F,Wg)
is induced by the map x — xr, as shown in the following table:

H(FWE)[ 1 | e | omr |
Hl (Fa WG) [12, 7} [Qa 1] [13 12] [7, ]-3] ‘ '

Set
Wei=Wgrx Wy
Using section [1 and taking (I0.0]) into account, it follows that

(10.7) P.(q) = sec(@)em(y)(Xamy) 27

if (z,y) is (Wg x Wy)-conjugate to an element of W, and P.(q) = 0 otherwise.
Again, we have written x,, instead of x,,, where {v} = ]él([x]), and likewise for 7.

Type d: In this case .S, contains regular elements in G, so H, = Z, = S, and
G, = Cg(S) is a maximal torus in G. Hence Py(q) # 0 only if T is GF-conjugate
to C(S). The mapping S — Cg(S) is given, in terms of conjugacy classes in Wy
and Wy, in the following table:

S 1 Tey T3 —1( (rarp)? | rars
Ca(S) | % [ 21 [ 12, -] [=1°1] BB,-] [[-3]
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Denote the embedding
Wy — Wa by y +— 7.
Let
Wa=A{(@,y): y€Wn} C Wg x Whg.
For (z,y) € W4, we may assume that T = Cg/(S). Then

Oalg) ~ D (“x"msr =Wu(S)"] > (“x.msr.

weWe(T)F wEWg(T)F
’UGWH(S)F
Since
L\ (t) — ;
¢ (Wa(S)F|
it follows that
(10.8) Pa(q) = Z (“Xsmsr = (Xas M) sF
’UJGWG(T)F

if (z,y) is (Wg x W )-conjugate to an element of Wy, and Py(q) = 0 otherwise.

10.1. Cuspidal multiplicities. From now on we assume that our tori 7T, S are
anisotropic, and that the characters x and 7 are regular. We will make the multi-
plicities computed above more precise.

The elliptic classes in W (B,,) are those of the form [—, A], where X is a partition
of n. So in Wg we have three elliptic classes:

[_73]7 [_712]7 [_713]‘
The first of these is the Coxeter class and the last is {—1}.

In Wy we also have three elliptic classes, represented by the powers

cox, cox?, cox’=—1

of a Coxeter element cox = r,7r3. Via the embedding Wg — W, the elements
—1, cox of Wy are also the —1 and Coxeter elements of W.

Let z € (T, G), y € cl(S, H). Note that P,(¢) = 0. Combining formulas (I0.3),
([I07), (I0.8), we get the multiplicity formula

(10.9) —(RE \RE Y ur = q+ pa(@) + pu(y) — dc(x)dn(y) + a(z,y)

where

sOCun-t)zr = (xcumzr  ifr=y=-1,
(10.10) a(@,y) = ¢ —(Xcox: M) zF if v =y = cox,
0 otherwise.

Here we have written Z. for Z,, when ¢ has type ¢, and likewise for Z; = S. The
numbers

<X—1777—1>va <X—1a77—1>25a <Xcox,77>Z5
are calculated explicitly in (I0.11]), (I0.I3) and (I0I6]) below.

We calculate pg(z) + pu(y) — ¢g(x)du(y) from the character tables of Wg and
Wy and then set A(x) = a(x,x) for x € {—1,cox} to arrive at the multiplicities in
Table [l

Note that S_; has regular characters only for ¢ > 5 (which we have already
assumed), and T has regular characters only for ¢ > 7. For ¢ = 5 we get Table 2]
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Ly [ [ PT=[1] [[-12]] [-,3]=[coq] |
[cod]=[-1 | ¢—T+A(-1)]| ¢—3 qg—1
[cox?] q—2 q—2 q—2
[cox] qg—4 q q+2— A(cox)

TABLE 1. —<R%7X,R§M>HF for ¢ > 7

L\ [ [P =[-1[[-12] ][~ 3] = [cox] |
[cox3] = [1] - 2 4
[cox?] - 3 3
[cox] - 5 6or7

TABLE 2. —(R%yx,ngn)HF forg=>5

where the dichotomy in the (cox, cox) entry arises from the fact that A(cox) =0 or
1, depending on x and 7 (see below).
The rest of this section is devoted to the explicit calculation of A(—1) and A(cox).
A(—1): We identify

Tfl = ( %)3, Sf‘l = {(x,y,z) € Tfl P rYr = 1}7

X = X1 ® X2 ® X3, n = Resgr (m ®n2 ®n3), with  x;, ; € Irr(f3).
Recall that
A(-1) =3 {x-1,m-1)z. — (X-1,M) 2.
We have ZI' = {(1,¢t,t71): t € fi} and

i 1
(10.11)  (x-1:7-1)zF =2Z<X— + X4+ mn +77—2+773> ,
iy \Xio Xi XiX;g me M3 m/g

For ¢ of type d, we have Z; = S_;. The Wg-orbit of x breaks up into four
W-orbits:

Oo =W (x1®x2 ®Xx3),

- (X1 ® X2 ® X3),

(X1 ® X2 ® X3),

(X1 ® X2 ® X3)-

(10.12)

These restrict to Wy-orbits Oy, ...,Os in Irr(SF,). Even though the orbits O;
consist of Wg-regular characters, the characters in O; need not be Wpy-regular.
Moreover, it can happen that O; = O; for i # j. In any case, formula (I0.8) gives

(10.13) —1mzr =i €[0,3]: n e O}

We illustrate with ¢ = 7. The unique regular Wg-orbit in Irr(7'f}) contains the
character Y = ¢ ® (2 ® 3, where ( is a faithful character of fi ~ ug. There are
two Wy-orbits of regular characters 1,7’ in Irr(S¥,), distinguished as follows: 7
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belongs to the restrictions O1 = O3, and = Resgr ((®1® ¢~?) does not extend

to a regular character of TF}. Formulas (I0.11)) and (I0.13) give

X-1m-1)zr =12, (X-1,m-1)zp =2,

(x-1,n_1)zr = 10, (x=1,n"1)zr = 0.

From Table [Il we get
—(R¢_, \RY  Vpgr=T-T+3-12-2=4,

—(RE | W RY  Var=T-T+%-10-0=5.

(10.14)

(10.15)

A(cox): Here the only relevant type is d. We identify

norm +1
chgx = fé = ker[ 6>3< - f;]’ SCI:)X = (ftli)q )

W (Teox) ¥ = W (Scox) " is cyclic of order six, and acts on T£ and SE via Gal(fs/f).

cox cox
If x € Irr(TL,) and n € Irr(SE)) are both regular, and 7 appears in the restriction

of some Galois conjugate of , then the restriction map Irr(7L ) — Irr(SE,) maps
We - x bijectively onto Wy - 1. Formula (I0.8) gives

1 if n = Res(¥x) for some w € Gal(fs/f),

(1016) A(COX) = <Xcox7n>Zf - 0 otherwise

Hence the (cox, cox) entry in Table [Ilis made precise:
(10.17)

qg+1 if n = Res(¥x) for some w € Gal(fg/f),

—(RY _, RH Fo=
( Teox>X Scox’77>H q+2 otherwise.
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