On the restriction of Deligne-Lusztig characters
HTML articles powered by AMS MathViewer
- by Mark Reeder;
- J. Amer. Math. Soc. 20 (2007), 573-602
- DOI: https://doi.org/10.1090/S0894-0347-06-00540-6
- Published electronically: July 14, 2006
- PDF | Request permission
Abstract:
We study the multiplicities of Deligne-Lusztig characters upon restriction from a finite reductive group to a finite reductive subgroup. The result is a qualitative formula for the growth of multiplicities in terms of complexity. For restrictions from $SO_{2n+1}$ to $SO_{2n}$ we get exact multiplicities.References
- Dmitri Akhiezer and Dmitri Panyushev, Multiplicities in the branching rules and the complexity of homogeneous spaces, Mosc. Math. J. 2 (2002), no. 1, 17–33, 198 (English, with English and Russian summaries). MR 1900582, DOI 10.17323/1609-4514-2002-2-1-17-33
- Eiichi Bannai, Noriaki Kawanaka, and Sung-Yell Song, The character table of the Hecke algebra ${\scr H}(\textrm {GL}_{2n}(\textbf {F}_q),\textrm {Sp}_{2n}(\textbf {F}_q))$, J. Algebra 129 (1990), no. 2, 320–366. MR 1040942, DOI 10.1016/0021-8693(90)90224-C beynon-spaltenstein M. Beynon and N. Spaltenstein, Tables of Green Polynomials for exceptional groups, Warwick computer science centre report no. 23 (1986).
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- Roger Carter, Semisimple conjugacy classes and classes in the Weyl group, J. Algebra 260 (2003), no. 1, 99–110. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973577, DOI 10.1016/S0021-8693(02)00628-2 debacker-reeder:Lpackets S. DeBacker and M. Reeder, Depth-Zero Supercuspidal $L$-packets and their Stability, preprint 2004.
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175–210. Computational methods in Lie theory (Essen, 1994). MR 1486215, DOI 10.1007/BF01190329
- Benedict H. Gross, On the centralizer of a regular, semi-simple, stable conjugacy class, Represent. Theory 9 (2005), 287–296. MR 2133761, DOI 10.1090/S1088-4165-05-00283-9
- Benedict H. Gross and Dipendra Prasad, On the decomposition of a representation of $\textrm {SO}_n$ when restricted to $\textrm {SO}_{n-1}$, Canad. J. Math. 44 (1992), no. 5, 974–1002. MR 1186476, DOI 10.4153/CJM-1992-060-8 gross-reeder:laplacelanglands B. Gross and M. Reeder, From Laplace to Langlands via representations of orthogonal groups, Bull. Amer. Math. Soc., 43 (2006), pp. 163-205. hagedorn:thesis T. Hagedorn, Multiplicities in Restricted Representations of $GL_n(\mathbf F_q)$, $U_n(\mathbf F_{q^2})$, $SO_n(\mathbf F_q)$, Ph.D. thesis, Harvard University (1994).
- D. Kazhdan, Proof of Springer’s hypothesis, Israel J. Math. 28 (1977), no. 4, 272–286. MR 486181, DOI 10.1007/BF02760635
- Domingo Luna, Sur les orbites fermées des groupes algébriques réductifs, Invent. Math. 16 (1972), 1–5 (French). MR 294351, DOI 10.1007/BF01391210
- George Lusztig, Green functions and character sheaves, Ann. of Math. (2) 131 (1990), no. 2, 355–408. MR 1043271, DOI 10.2307/1971496
- George Lusztig, Symmetric spaces over a finite field, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 57–81. MR 1106911, DOI 10.1007/978-0-8176-4576-2_{3}
- Toshiaki Shoji, On the Green polynomials of a Chevalley group of type $F_{4}$, Comm. Algebra 10 (1982), no. 5, 505–543. MR 647835, DOI 10.1080/00927878208822732
- T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), no. 2, 239–267. MR 723216, DOI 10.1007/BF01394315
- Toshiaki Shoji, Green functions of reductive groups over a finite field, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 289–301. MR 933366, DOI 10.1090/pspum/047.1/933366
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
- T. A. Springer, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 2, 271–282. MR 763421
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Math., Vol. 131, Springer, Berlin-New York, 1970, pp. 167–266. MR 268192
- Robert Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224. MR 430094, DOI 10.1007/BF01390010
- Bhama Srinivasan, Green polynomials of finite classical groups, Comm. Algebra 5 (1977), no. 12, 1241–1258. MR 498889, DOI 10.1080/00927877708822217
- Elmar Thoma, Die Einschränkung der Charaktere von $\textrm {GL}(n,\,q)$ auf $\textrm {GL}(n-1,\,q)$, Math. Z. 119 (1971), 321–338 (German). MR 288190, DOI 10.1007/BF01109884
Bibliographic Information
- Mark Reeder
- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
- Email: reederma@bc.edu
- Received by editor(s): June 17, 2005
- Published electronically: July 14, 2006
- Additional Notes: The author was supported by NSF grant DMS-0207231
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 573-602
- MSC (2000): Primary 20C33
- DOI: https://doi.org/10.1090/S0894-0347-06-00540-6
- MathSciNet review: 2276780