## On the restriction of Deligne-Lusztig characters

HTML articles powered by AMS MathViewer

- by Mark Reeder PDF
- J. Amer. Math. Soc.
**20**(2007), 573-602 Request permission

## Abstract:

We study the multiplicities of Deligne-Lusztig characters upon restriction from a finite reductive group to a finite reductive subgroup. The result is a qualitative formula for the growth of multiplicities in terms of complexity. For restrictions from $SO_{2n+1}$ to $SO_{2n}$ we get exact multiplicities.## References

- Dmitri Akhiezer and Dmitri Panyushev,
*Multiplicities in the branching rules and the complexity of homogeneous spaces*, Mosc. Math. J.**2**(2002), no. 1, 17–33, 198 (English, with English and Russian summaries). MR**1900582**, DOI 10.17323/1609-4514-2002-2-1-17-33 - Eiichi Bannai, Noriaki Kawanaka, and Sung-Yell Song,
*The character table of the Hecke algebra ${\scr H}(\textrm {GL}_{2n}(\textbf {F}_q),\textrm {Sp}_{2n}(\textbf {F}_q))$*, J. Algebra**129**(1990), no. 2, 320–366. MR**1040942**, DOI 10.1016/0021-8693(90)90224-C
beynon-spaltenstein M. Beynon and N. Spaltenstein, - Armand Borel,
*Linear algebraic groups*, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR**1102012**, DOI 10.1007/978-1-4612-0941-6 - Roger W. Carter,
*Finite groups of Lie type*, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR**1266626** - Roger Carter,
*Semisimple conjugacy classes and classes in the Weyl group*, J. Algebra**260**(2003), no. 1, 99–110. Special issue celebrating the 80th birthday of Robert Steinberg. MR**1973577**, DOI 10.1016/S0021-8693(02)00628-2
debacker-reeder:Lpackets S. DeBacker and M. Reeder, - P. Deligne and G. Lusztig,
*Representations of reductive groups over finite fields*, Ann. of Math. (2)**103**(1976), no. 1, 103–161. MR**393266**, DOI 10.2307/1971021 - Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer,
*CHEVIE—a system for computing and processing generic character tables*, Appl. Algebra Engrg. Comm. Comput.**7**(1996), no. 3, 175–210. Computational methods in Lie theory (Essen, 1994). MR**1486215**, DOI 10.1007/BF01190329 - Benedict H. Gross,
*On the centralizer of a regular, semi-simple, stable conjugacy class*, Represent. Theory**9**(2005), 287–296. MR**2133761**, DOI 10.1090/S1088-4165-05-00283-9 - Benedict H. Gross and Dipendra Prasad,
*On the decomposition of a representation of $\textrm {SO}_n$ when restricted to $\textrm {SO}_{n-1}$*, Canad. J. Math.**44**(1992), no. 5, 974–1002. MR**1186476**, DOI 10.4153/CJM-1992-060-8
gross-reeder:laplacelanglands B. Gross and M. Reeder, - D. Kazhdan,
*Proof of Springer’s hypothesis*, Israel J. Math.**28**(1977), no. 4, 272–286. MR**486181**, DOI 10.1007/BF02760635 - Domingo Luna,
*Sur les orbites fermées des groupes algébriques réductifs*, Invent. Math.**16**(1972), 1–5 (French). MR**294351**, DOI 10.1007/BF01391210 - George Lusztig,
*Green functions and character sheaves*, Ann. of Math. (2)**131**(1990), no. 2, 355–408. MR**1043271**, DOI 10.2307/1971496 - George Lusztig,
*Symmetric spaces over a finite field*, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 57–81. MR**1106911**, DOI 10.1007/978-0-8176-4576-2_{3} - Toshiaki Shoji,
*On the Green polynomials of a Chevalley group of type $F_{4}$*, Comm. Algebra**10**(1982), no. 5, 505–543. MR**647835**, DOI 10.1080/00927878208822732 - T. Shoji,
*On the Green polynomials of classical groups*, Invent. Math.**74**(1983), no. 2, 239–267. MR**723216**, DOI 10.1007/BF01394315 - Toshiaki Shoji,
*Green functions of reductive groups over a finite field*, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 289–301. MR**933366** - T. A. Springer,
*Trigonometric sums, Green functions of finite groups and representations of Weyl groups*, Invent. Math.**36**(1976), 173–207. MR**442103**, DOI 10.1007/BF01390009 - T. A. Springer,
*A construction of representations of Weyl groups*, Invent. Math.**44**(1978), no. 3, 279–293. MR**491988**, DOI 10.1007/BF01403165 - T. A. Springer,
*A purity result for fixed point varieties in flag manifolds*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**31**(1984), no. 2, 271–282. MR**763421** - T. A. Springer and R. Steinberg,
*Conjugacy classes*, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR**0268192** - Robert Steinberg,
*On the desingularization of the unipotent variety*, Invent. Math.**36**(1976), 209–224. MR**430094**, DOI 10.1007/BF01390010 - Bhama Srinivasan,
*Green polynomials of finite classical groups*, Comm. Algebra**5**(1977), no. 12, 1241–1258. MR**498889**, DOI 10.1080/00927877708822217 - Elmar Thoma,
*Die Einschränkung der Charaktere von $\textrm {GL}(n,\,q)$ auf $\textrm {GL}(n-1,\,q)$*, Math. Z.**119**(1971), 321–338 (German). MR**288190**, DOI 10.1007/BF01109884

*Tables of Green Polynomials for exceptional groups*, Warwick computer science centre report no. 23 (1986).

*Depth-Zero Supercuspidal $L$-packets and their Stability*, preprint 2004.

*From Laplace to Langlands via representations of orthogonal groups*, Bull. Amer. Math. Soc.,

**43**(2006), pp. 163-205. hagedorn:thesis T. Hagedorn,

*Multiplicities in Restricted Representations of $GL_n(\mathbf F_q)$, $U_n(\mathbf F_{q^2})$, $SO_n(\mathbf F_q)$*, Ph.D. thesis, Harvard University (1994).

## Additional Information

**Mark Reeder**- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
- Email: reederma@bc.edu
- Received by editor(s): June 17, 2005
- Published electronically: July 14, 2006
- Additional Notes: The author was supported by NSF grant DMS-0207231
- © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**20**(2007), 573-602 - MSC (2000): Primary 20C33
- DOI: https://doi.org/10.1090/S0894-0347-06-00540-6
- MathSciNet review: 2276780