Global well-posedness of the Benjamin–Ono equation in low-regularity spaces
HTML articles powered by AMS MathViewer
- by Alexandru D. Ionescu and Carlos E. Kenig;
- J. Amer. Math. Soc. 20 (2007), 753-798
- DOI: https://doi.org/10.1090/S0894-0347-06-00551-0
- Published electronically: October 24, 2006
- PDF | Request permission
Abstract:
We prove that the Benjamin–Ono initial-value problem is globally well-posed in the Banach spaces $H^\sigma _r(\mathbb {R})$, $\sigma \geq 0$, of real-valued Sobolev functions.References
- Be T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967), 559–592.
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, DOI 10.1007/BF01896020 BuPl N. Burq and F. Planchon, On well-posedness for the Benjamin-Ono equation, preprint (2005).
- J. Colliander, C. Kenig, and G. Staffilani, Local well-posedness for dispersion-generalized Benjamin-Ono equations, Differential Integral Equations 16 (2003), no. 12, 1441–1472. MR 2029909
- J. Ginibre and G. Velo, Smoothing properties and existence of solutions for the generalized Benjamin-Ono equation, J. Differential Equations 93 (1991), no. 1, 150–212. MR 1122309, DOI 10.1016/0022-0396(91)90025-5 IoKe A. D. Ionescu and C. E. Kenig, Complex-valued solutions of the Benjamin-Ono equation, preprint (2006).
- Rafael José Iório Jr., On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential Equations 11 (1986), no. 10, 1031–1081. MR 847994, DOI 10.1080/03605308608820456
- Carlos E. Kenig and Kenneth D. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett. 10 (2003), no. 5-6, 879–895. MR 2025062, DOI 10.4310/MRL.2003.v10.n6.a13
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), no. 2, 323–347. MR 1086966, DOI 10.1090/S0894-0347-1991-1086966-0
- S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221–1268. MR 1231427, DOI 10.1002/cpa.3160460902
- Sergiu Klainerman and Sigmund Selberg, Remark on the optimal regularity for equations of wave maps type, Comm. Partial Differential Equations 22 (1997), no. 5-6, 901–918. MR 1452172, DOI 10.1080/03605309708821288
- H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s({\Bbb R})$, Int. Math. Res. Not. 26 (2003), 1449–1464. MR 1976047, DOI 10.1155/S1073792803211260
- H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not. 30 (2005), 1833–1847. MR 2172940, DOI 10.1155/IMRN.2005.1833
- L. Molinet, J. C. Saut, and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001), no. 4, 982–988. MR 1885293, DOI 10.1137/S0036141001385307 Mo L. Molinet, Global well-posedness in $L^2$ for the periodic Benjamin-Ono equation, preprint (2006).
- Hiroaki Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), no. 4, 1082–1091. MR 398275, DOI 10.1143/JPSJ.39.1082
- Gustavo Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations 4 (1991), no. 3, 527–542. MR 1097916
- J.-C. Saut, Sur quelques généralisations de l’équation de Korteweg-de Vries, J. Math. Pures Appl. (9) 58 (1979), no. 1, 21–61 (French). MR 533234
- Terence Tao, Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Internat. Math. Res. Notices 6 (2001), 299–328. MR 1820329, DOI 10.1155/S1073792801000150
- Terence Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), no. 2, 443–544. MR 1869874, DOI 10.1007/PL00005588
- Terence Tao, Multilinear weighted convolution of $L^2$-functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123 (2001), no. 5, 839–908. MR 1854113, DOI 10.1353/ajm.2001.0035
- Terence Tao, Global well-posedness of the Benjamin-Ono equation in $H^1(\textbf {R})$, J. Hyperbolic Differ. Equ. 1 (2004), no. 1, 27–49. MR 2052470, DOI 10.1142/S0219891604000032
- Daniel Tataru, Local and global results for wave maps. I, Comm. Partial Differential Equations 23 (1998), no. 9-10, 1781–1793. MR 1641721, DOI 10.1080/03605309808821400
- Daniel Tataru, On global existence and scattering for the wave maps equation, Amer. J. Math. 123 (2001), no. 1, 37–77. MR 1827277, DOI 10.1353/ajm.2001.0005
- Michael Mudi Tom, Smoothing properties of some weak solutions of the Benjamin-Ono equation, Differential Integral Equations 3 (1990), no. 4, 683–694. MR 1044213
Bibliographic Information
- Alexandru D. Ionescu
- Affiliation: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Van Vleck Hall, Madison, Wisconsin 53706
- MR Author ID: 660963
- Email: ionescu@math.wisc.edu
- Carlos E. Kenig
- Affiliation: Department of Mathematics, University of Chicago, 5734 University Ave, Chicago, Illinois 60637-1514
- MR Author ID: 100230
- Email: cek@math.uchicago.edu
- Received by editor(s): October 10, 2005
- Published electronically: October 24, 2006
- Additional Notes: The first author was supported in part by an NSF grant, a Sloan Research Fellowship, and a Packard Fellowship.
The second author was supported in part by an NSF grant. - © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 753-798
- MSC (2000): Primary 35Q53
- DOI: https://doi.org/10.1090/S0894-0347-06-00551-0
- MathSciNet review: 2291918