Upper bounds in quantum dynamics
HTML articles powered by AMS MathViewer
- by David Damanik and Serguei Tcheremchantsev;
- J. Amer. Math. Soc. 20 (2007), 799-827
- DOI: https://doi.org/10.1090/S0894-0347-06-00554-6
- Published electronically: November 3, 2006
Abstract:
We develop a general method to bound the spreading of an entire wavepacket under Schrödinger dynamics from above. This method derives upper bounds on time-averaged moments of the position operator from lower bounds on norms of transfer matrices at complex energies. This general result is applied to the Fibonacci operator. We find that at sufficiently large coupling, all transport exponents take values strictly between zero and one. This is the first rigorous result on anomalous transport. For quasi-periodic potentials associated with trigonometric polynomials, we prove that all lower transport exponents and, under a weak assumption on the frequency, all upper transport exponents vanish for all phases if the Lyapunov exponent is uniformly bounded away from zero. By a well-known result of Herman, this assumption always holds at sufficiently large coupling. For the particular case of the almost Mathieu operator, our result applies for coupling greater than two.References
- ah S. Abe and H. Hiramoto, Fractal dynamics of electron wave packets in one-dimensional quasiperiodic systems, Phys. Rev. A 36 (1987), 5349–5352.
- Michael Aizenman, Localization at weak disorder: some elementary bounds, Rev. Math. Phys. 6 (1994), no. 5A, 1163–1182. Special issue dedicated to Elliott H. Lieb. MR 1301371, DOI 10.1142/S0129055X94000419
- Michael Aizenman, Alexander Elgart, Serguei Naboko, Jeffrey H. Schenker, and Gunter Stolz, Moment analysis for localization in random Schrödinger operators, Invent. Math. 163 (2006), no. 2, 343–413. MR 2207021, DOI 10.1007/s00222-005-0463-y
- Michael Aizenman and Stanislav Molchanov, Localization at large disorder and at extreme energies: an elementary derivation, Comm. Math. Phys. 157 (1993), no. 2, 245–278. MR 1244867, DOI 10.1007/BF02099760
- Michael Aizenman, Jeffrey H. Schenker, Roland M. Friedrich, and Dirk Hundertmark, Finite-volume fractional-moment criteria for Anderson localization, Comm. Math. Phys. 224 (2001), no. 1, 219–253. Dedicated to Joel L. Lebowitz. MR 1868998, DOI 10.1007/s002200100441
- Michael Baake and Robert V. Moody (eds.), Directions in mathematical quasicrystals, CRM Monograph Series, vol. 13, American Mathematical Society, Providence, RI, 2000. MR 1798986, DOI 10.1090/crmm/013
- Joseph Bak and Donald J. Newman, Complex analysis, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. First edition [Springer, New York, 1982; MR0671250 (84b:30001)]. MR 1423130
- Jean-Marie Barbaroux, François Germinet, and Serguei Tcheremchantsev, Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Duke Math. J. 110 (2001), no. 1, 161–193. MR 1861091, DOI 10.1215/S0012-7094-01-11015-6
- J. M. Barbaroux and S. Tcheremchantsev, Universal lower bounds for quantum diffusion, J. Funct. Anal. 168 (1999), no. 2, 327–354. MR 1719245, DOI 10.1006/jfan.1999.3471
- Jean Bellissard, Italo Guarneri, and Hermann Schulz-Baldes, Phase-averaged transport for quasi-periodic Hamiltonians, Comm. Math. Phys. 227 (2002), no. 3, 515–539. MR 1910829, DOI 10.1007/s002200200642
- J. Bellissard, B. Iochum, E. Scoppola, and D. Testard, Spectral properties of one-dimensional quasi-crystals, Comm. Math. Phys. 125 (1989), no. 3, 527–543. MR 1022526, DOI 10.1007/BF01218415
- J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2) 152 (2000), no. 3, 835–879. MR 1815703, DOI 10.2307/2661356
- J. Bourgain and S. Jitomirskaya, Anderson localization for the band model, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1745, Springer, Berlin, 2000, pp. 67–79. MR 1796713, DOI 10.1007/BFb0107208
- Jean-Michel Combes, Connections between quantum dynamics and spectral properties of time-evolution operators, Differential equations with applications to mathematical physics, Math. Sci. Engrg., vol. 192, Academic Press, Boston, MA, 1993, pp. 59–68. MR 1207148, DOI 10.1016/S0076-5392(08)62372-3
- Jean-Michel Combes and Giorgio Mantica, Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices, Long time behaviour of classical and quantum systems (Bologna, 1999) Ser. Concr. Appl. Math., vol. 1, World Sci. Publ., River Edge, NJ, 2001, pp. 107–123. MR 1852219, DOI 10.1142/9789812794598_{0}006
- John B. Conway, Functions of one complex variable. II, Graduate Texts in Mathematics, vol. 159, Springer-Verlag, New York, 1995. MR 1344449, DOI 10.1007/978-1-4612-0817-4
- H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643, DOI 10.1007/978-3-540-77522-5
- David Damanik, $\alpha$-continuity properties of one-dimensional quasicrystals, Comm. Math. Phys. 192 (1998), no. 1, 169–182. MR 1612089, DOI 10.1007/s002200050295
- David Damanik, Dynamical upper bounds for one-dimensional quasicrystals, J. Math. Anal. Appl. 303 (2005), no. 1, 327–341. MR 2113885, DOI 10.1016/j.jmaa.2004.08.038
- David Damanik, Rowan Killip, and Daniel Lenz, Uniform spectral properties of one-dimensional quasicrystals. III. $\alpha$-continuity, Comm. Math. Phys. 212 (2000), no. 1, 191–204. MR 1764367, DOI 10.1007/s002200000203 dls D. Damanik, D. Lenz, and G. Stolz, Lower transport bounds for one-dimensional continuum Schrödinger operators, to appear in Math. Ann.
- D. Damanik and P. Stollmann, Multi-scale analysis implies strong dynamical localization, Geom. Funct. Anal. 11 (2001), no. 1, 11–29. MR 1829640, DOI 10.1007/PL00001666
- David Damanik, András Sütő, and Serguei Tcheremchantsev, Power-law bounds on transfer matrices and quantum dynamics in one dimension. II, J. Funct. Anal. 216 (2004), no. 2, 362–387. MR 2095687, DOI 10.1016/j.jfa.2004.05.007
- David Damanik and Serguei Tcheremchantsev, Power-law bounds on transfer matrices and quantum dynamics in one dimension, Comm. Math. Phys. 236 (2003), no. 3, 513–534. MR 2021200, DOI 10.1007/s00220-003-0824-6 DT2 D. Damanik and S. Tcheremchantsev, Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading, J. d’Analyse Math. 97 (2005), 103–131.
- R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 69 (1996), 153–200. MR 1428099, DOI 10.1007/BF02787106
- J. Fröhlich, F. Martinelli, E. Scoppola, and T. Spencer, Constructive proof of localization in the Anderson tight binding model, Comm. Math. Phys. 101 (1985), no. 1, 21–46. MR 814541, DOI 10.1007/BF01212355
- Jürg Fröhlich and Thomas Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys. 88 (1983), no. 2, 151–184. MR 696803, DOI 10.1007/BF01209475
- T. Geisel, R. Ketzmerick, and G. Petschel, Unbounded quantum diffusion and a new class of level statistics, Quantum chaos—quantum measurement (Copenhagen, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 358, Kluwer Acad. Publ., Dordrecht, 1992, pp. 43–59. MR 1155870
- François Germinet, Dynamical localization II with an application to the almost Mathieu operator, J. Statist. Phys. 95 (1999), no. 1-2, 273–286. MR 1705587, DOI 10.1023/A:1004533629182
- F. Germinet and S. De Bièvre, Dynamical localization for discrete and continuous random Schrödinger operators, Comm. Math. Phys. 194 (1998), no. 2, 323–341. MR 1627657, DOI 10.1007/s002200050360
- François Germinet and Svetlana Jitomirskaya, Strong dynamical localization for the almost Mathieu model, Rev. Math. Phys. 13 (2001), no. 6, 755–765. MR 1841745, DOI 10.1142/S0129055X01000855
- François Germinet, Alexander Kiselev, and Serguei Tcheremchantsev, Transfer matrices and transport for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 787–830 (English, with English and French summaries). MR 2097423, DOI 10.5802/aif.2034
- François Germinet and Abel Klein, Bootstrap multiscale analysis and localization in random media, Comm. Math. Phys. 222 (2001), no. 2, 415–448. MR 1859605, DOI 10.1007/s002200100518
- D. J. Gilbert, On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), no. 3-4, 213–229. MR 1014651, DOI 10.1017/S0308210500018680
- D. J. Gilbert and D. B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl. 128 (1987), no. 1, 30–56. MR 915965, DOI 10.1016/0022-247X(87)90212-5
- Michael Goldstein and Wilhelm Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math. (2) 154 (2001), no. 1, 155–203. MR 1847592, DOI 10.2307/3062114
- A. Ja. Gordon, The point spectrum of the one-dimensional Schrödinger operator, Uspehi Mat. Nauk 31 (1976), no. 4(190), 257–258 (Russian). MR 458247 gu I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett. 10 (1989), 95–100. gu2 I. Guarneri, On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993), 729–733.
- I. Guarneri and H. Schulz-Baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Electron. J. 5 (1999), Paper 1, 16. MR 1663518
- Italo Guarneri and Hermann Schulz-Baldes, Intermittent lower bound on quantum diffusion, Lett. Math. Phys. 49 (1999), no. 4, 317–324. MR 1749574, DOI 10.1023/A:1007610717491
- Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol′d et de Moser sur le tore de dimension $2$, Comment. Math. Helv. 58 (1983), no. 3, 453–502 (French). MR 727713, DOI 10.1007/BF02564647 ah1 H. Hiramoto and S. Abe, Dynamics of an electron in quasiperiodic systems. I. Fibonacci model, J. Phys. Soc. Japan 57 (1988), 230–240. ah2 H. Hiramoto and S. Abe, Dynamics of an electron in quasiperiodic systems. II. Harper model, J. Phys. Soc. Japan 57 (1988), 1365–1372.
- B. Iochum, L. Raymond, and D. Testard, Resistance of one-dimensional quasicrystals, Phys. A 187 (1992), no. 1-2, 353–368. MR 1178630, DOI 10.1016/0378-4371(92)90426-Q
- B. Iochum and D. Testard, Power law growth for the resistance in the Fibonacci model, J. Statist. Phys. 65 (1991), no. 3-4, 715–723. MR 1137430, DOI 10.1007/BF01053750
- Svetlana Ya. Jitomirskaya, Metal-insulator transition for the almost Mathieu operator, Ann. of Math. (2) 150 (1999), no. 3, 1159–1175. MR 1740982, DOI 10.2307/121066
- S. Jitomirskaya and M. Landrigan, Zero-dimensional spectral measures for quasi-periodic operators with analytic potential, J. Statist. Phys. 100 (2000), no. 3-4, 791–796. MR 1788487, DOI 10.1023/A:1018635811535
- Svetlana Ya. Jitomirskaya and Yoram Last, Anderson localization for the almost Mathieu equation. III. Semi-uniform localization, continuity of gaps, and measure of the spectrum, Comm. Math. Phys. 195 (1998), no. 1, 1–14. MR 1637389, DOI 10.1007/s002200050376
- Svetlana Jitomirskaya and Yoram Last, Power-law subordinacy and singular spectra. I. Half-line operators, Acta Math. 183 (1999), no. 2, 171–189. MR 1738043, DOI 10.1007/BF02392827
- Svetlana Ya. Jitomirskaya and Yoram Last, Power law subordinacy and singular spectra. II. Line operators, Comm. Math. Phys. 211 (2000), no. 3, 643–658. MR 1773812, DOI 10.1007/s002200050830
- S. Jitomirskaya, H. Schulz-Baldes, and G. Stolz, Delocalization in random polymer models, Comm. Math. Phys. 233 (2003), no. 1, 27–48. MR 1957731, DOI 10.1007/s00220-002-0757-5
- S. Jitomirskaya and B. Simon, Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators, Comm. Math. Phys. 165 (1994), no. 1, 201–205. MR 1298948, DOI 10.1007/BF02099743
- R. Ketzmerick, K. Kruse, S. Kraut, and T. Geisel, What determines the spreading of a wave packet?, Phys. Rev. Lett. 79 (1997), no. 11, 1959–1963. MR 1471447, DOI 10.1103/PhysRevLett.79.1959
- A. Ya. Khinchin, Continued fractions, Translated from the third (1961) Russian edition, Dover Publications, Inc., Mineola, NY, 1997. With a preface by B. V. Gnedenko; Reprint of the 1964 translation. MR 1451873
- Rowan Killip, Alexander Kiselev, and Yoram Last, Dynamical upper bounds on wavepacket spreading, Amer. J. Math. 125 (2003), no. 5, 1165–1198. MR 2004433, DOI 10.1353/ajm.2003.0031
- A. Kiselev and Y. Last, Solutions, spectrum, and dynamics for Schrödinger operators on infinite domains, Duke Math. J. 102 (2000), no. 1, 125–150. MR 1741780, DOI 10.1215/S0012-7094-00-10215-3
- Mahito Kohmoto, Leo P. Kadanoff, and Chao Tang, Localization problem in one dimension: mapping and escape, Phys. Rev. Lett. 50 (1983), no. 23, 1870–1872. MR 702474, DOI 10.1103/PhysRevLett.50.1870
- Shinichi Kotani, Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators, Stochastic analysis (Katata/Kyoto, 1982) North-Holland Math. Library, vol. 32, North-Holland, Amsterdam, 1984, pp. 225–247. MR 780760, DOI 10.1016/S0924-6509(08)70395-7
- Y. Last, A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants, Comm. Math. Phys. 151 (1993), no. 1, 183–192. MR 1201659, DOI 10.1007/BF02096752
- Yoram Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal. 142 (1996), no. 2, 406–445. MR 1423040, DOI 10.1006/jfan.1996.0155
- Yoram Last and Barry Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), no. 2, 329–367. MR 1666767, DOI 10.1007/s002220050288
- Mahito Kohmoto, Leo P. Kadanoff, and Chao Tang, Localization problem in one dimension: mapping and escape, Phys. Rev. Lett. 50 (1983), no. 23, 1870–1872. MR 702474, DOI 10.1103/PhysRevLett.50.1870 r L. Raymond, A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain, preprint (1997). sbgc D. Shechtman, I. Blech, D. Gratias, and J. V. Cahn, Metallic phase with long range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), 1951–1953.
- Barry Simon, Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3361–3369. MR 1350963, DOI 10.1090/S0002-9939-96-03599-X
- Eugene Sorets and Thomas Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys. 142 (1991), no. 3, 543–566. MR 1138050, DOI 10.1007/BF02099100
- András Sütő, The spectrum of a quasiperiodic Schrödinger operator, Comm. Math. Phys. 111 (1987), no. 3, 409–415. MR 900502, DOI 10.1007/BF01238906
- András Sütő, Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian, J. Statist. Phys. 56 (1989), no. 3-4, 525–531. MR 1009514, DOI 10.1007/BF01044450
- Serguei Tcheremchantsev, Mixed lower bounds for quantum transport, J. Funct. Anal. 197 (2003), no. 1, 247–282. MR 1957683, DOI 10.1016/S0022-1236(02)00066-6
- Serguei Tcheremchantsev, Dynamical analysis of Schrödinger operators with growing sparse potentials, Comm. Math. Phys. 253 (2005), no. 1, 221–252. MR 2105642, DOI 10.1007/s00220-004-1153-0
- Serguei Tcheremchantsev, How to prove dynamical localization, Comm. Math. Phys. 221 (2001), no. 1, 27–56. MR 1846900, DOI 10.1007/s002200100460 T4 S. Tcheremchantsev, Spectral and dynamical analysis of Schrödinger operators with growing sparse potentials, in preparation.
- Henrique von Dreifus and Abel Klein, A new proof of localization in the Anderson tight binding model, Comm. Math. Phys. 124 (1989), no. 2, 285–299. MR 1012868, DOI 10.1007/BF01219198 wa M. Wilkinson and E. Austin, Spectral dimension and dynamics for Harper’s equation, Phys. Rev. B 50 (1994), 1420–1429.
- Jean-Christophe Yoccoz, Analytic linearization of circle diffeomorphisms, Dynamical systems and small divisors (Cetraro, 1998) Lecture Notes in Math., vol. 1784, Springer, Berlin, 2002, pp. 125–173. MR 1924912, DOI 10.1007/978-3-540-47928-4_{3}
Bibliographic Information
- David Damanik
- Affiliation: Department of Mathematics, 253–37, California Institute of Technology, Pasadena, California 91125
- Address at time of publication: Department of Mathematics, MS-136, Rice University, Houston, Texas 77251
- MR Author ID: 621621
- Email: damanik@caltech.edu, damanik@rice.edu
- Serguei Tcheremchantsev
- Affiliation: UMR 6628–MAPMO, Université d’ Orléans, B.P. 6759, F-45067 Orléans Cedex, France
- Email: serguei.tcherem@labomath.univ-orleans.fr
- Received by editor(s): October 26, 2005
- Published electronically: November 3, 2006
- © Copyright 2006 by the authors
- Journal: J. Amer. Math. Soc. 20 (2007), 799-827
- MSC (2000): Primary 81Q10; Secondary 47B36
- DOI: https://doi.org/10.1090/S0894-0347-06-00554-6
- MathSciNet review: 2291919