Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic
Author:
Daniel Smania
Journal:
J. Amer. Math. Soc. 20 (2007), 629-673
MSC (2000):
Primary 37F30, 37C15, 30C62, 30C65, 37F25, 37F45, 37E20
DOI:
https://doi.org/10.1090/S0894-0347-07-00550-4
Published electronically:
January 17, 2007
MathSciNet review:
2291915
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and “complex bounds”, two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with $1$-dimensional unstable manifold.
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI https://doi.org/10.2307/1970141
- Artur Avila, Mikhail Lyubich, and Welington de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math. 154 (2003), no. 3, 451–550. MR 2018784, DOI https://doi.org/10.1007/s00222-003-0307-6
- B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 52–68. MR 982072, DOI https://doi.org/10.1007/BFb0081242
- Bodil Branner, Cubic polynomials: turning around the connectedness locus, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 391–427. MR 1215972
- Bodil Branner and John H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), no. 3-4, 143–206. MR 945011, DOI https://doi.org/10.1007/BF02392275
- Henk Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc. 350 (1998), no. 6, 2229–2263. MR 1458316, DOI https://doi.org/10.1090/S0002-9947-98-02109-6
- H. Bruin, G. Keller, T. Nowicki, and S. van Strien, Wild Cantor attractors exist, Ann. of Math. (2) 143 (1996), no. 1, 97–130. MR 1370759, DOI https://doi.org/10.2307/2118654
- Xavier Buff, Fibonacci fixed point of renormalization, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1287–1317. MR 1786715, DOI https://doi.org/10.1017/S0143385700000705
- Jacek Graczyk and Grzegorz Świa̧tek, Induced expansion for quadratic polynomials, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 4, 399–482 (English, with English and French summaries). MR 1386222
- Jacek Graczyk and Grzegorz Światek, Generic hyperbolicity in the logistic family, Ann. of Math. (2) 146 (1997), no. 1, 1–52. MR 1469316, DOI https://doi.org/10.2307/2951831
- Juha Heinonen and Pekka Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), no. 1, 61–79. MR 1323982, DOI https://doi.org/10.1007/BF01241122
- Sari Kallunki and Pekka Koskela, Exceptional sets for the definition of quasiconformality, Amer. J. Math. 122 (2000), no. 4, 735–743. MR 1771571
- Gerhard Keller and Tomasz Nowicki, Fibonacci maps re(al)visited, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 99–120. MR 1314971, DOI https://doi.org/10.1017/S0143385700008269
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463
- Genadi Levin and Sebastian van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math. (2) 147 (1998), no. 3, 471–541. MR 1637647, DOI https://doi.org/10.2307/120958 [Lyu93]lyut M. Lyubich. Teichmuller space of Fibonacci maps. Preprint, ims93-12, IMS-SUNY at Stony Brook, 1993.
- Mikhail Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997), no. 2, 185–247, 247–297. MR 1459261, DOI https://doi.org/10.1007/BF02392694
- Mikhail Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2) 140 (1994), no. 2, 347–404. MR 1298717, DOI https://doi.org/10.2307/2118604
- Mikhail Lyubich, Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture, Ann. of Math. (2) 149 (1999), no. 2, 319–420. MR 1689333, DOI https://doi.org/10.2307/120968
- Mikhail Lyubich and John Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc. 6 (1993), no. 2, 425–457. MR 1182670, DOI https://doi.org/10.1090/S0894-0347-1993-1182670-0
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347 [P]perez R. A. Perez. On the combinatorics of the principal nest. Ph. D. Thesis, IMS-SUNY at Stony Brook, 2002.
- Feliks Przytycki and Steffen Rohde, Rigidity of holomorphic Collet-Eckmann repellers, Ark. Mat. 37 (1999), no. 2, 357–371. MR 1714763, DOI https://doi.org/10.1007/BF02412220
- Weixiao Shen, On the metric properties of multimodal interval maps and $C^2$ density of Axiom A, Invent. Math. 156 (2004), no. 2, 301–403. MR 2052610, DOI https://doi.org/10.1007/s00222-003-0343-2
- Daniel Smania, Phase space universality for multimodal maps, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 2, 225–274. MR 2152018, DOI https://doi.org/10.1007/s00574-005-0038-y
- Daniel Smania, On the hyperbolicity of the period-doubling fixed point, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1827–1846. MR 2186998, DOI https://doi.org/10.1090/S0002-9947-05-03803-1 [vSN94]SN S. van Strien and T. Nowicki. Polynomial maps with a Julia set of positive Lebesgue measure: Fibonacci maps. Unpublished, 1994.
- Dennis Sullivan, Bounds, quadratic differentials, and renormalization conjectures, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 417–466. MR 1184622
- Grzegorz Świa̧tek and Edson Vargas, Decay of geometry in the cubic family, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1311–1329. MR 1653256, DOI https://doi.org/10.1017/S0143385798117558
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 37F30, 37C15, 30C62, 30C65, 37F25, 37F45, 37E20
Retrieve articles in all journals with MSC (2000): 37F30, 37C15, 30C62, 30C65, 37F25, 37F45, 37E20
Additional Information
Daniel Smania
Affiliation:
Institute for Mathematical Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-3660
Address at time of publication:
Departamento de Matemática, ICMC-USP-Campus de São Carlos, Caixa Postal 668, São Carlos-SP, CEP 13560-970, Brazil
Email:
smania@icmc.usp.br
Keywords:
Fibonacci combinatorics,
generalized renormalization,
puzzle,
rigidity,
quasiconformal conjugacy,
removability,
hyperbolicity
Received by editor(s):
April 19, 2005
Published electronically:
January 17, 2007
Additional Notes:
This work was supported by grants CNPq-200764/01-2, CNPq-472316/2003-6 and FAPESP-03/03107-9. Visits to Warwick University and ICTP-Trieste were supported by CNPq-Brazil grant 460110/00-4, Warwick University and ICTP-Trieste.
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.