## Well-posedness of the free-surface incompressible Euler equations with or without surface tension

HTML articles powered by AMS MathViewer

- by Daniel Coutand and Steve Shkoller PDF
- J. Amer. Math. Soc.
**20**(2007), 829-930 Request permission

## Abstract:

We provide a new method for treating free boundary problems in perfect fluids, and prove local-in-time well-posedness in Sobolev spaces for the free-surface incompressible 3D Euler equations with or without surface tension for arbitrary initial data, and without any irrotationality assumption on the fluid. This is a free boundary problem for the motion of an incompressible perfect liquid in vacuum, wherein the motion of the fluid interacts with the motion of the free-surface at highest-order.## References

- Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - David M. Ambrose,
*Well-posedness of vortex sheets with surface tension*, SIAM J. Math. Anal.**35**(2003), no. 1, 211–244. MR**2001473**, DOI 10.1137/S0036141002403869 - David M. Ambrose and Nader Masmoudi,
*The zero surface tension limit of two-dimensional water waves*, Comm. Pure Appl. Math.**58**(2005), no. 10, 1287–1315. MR**2162781**, DOI 10.1002/cpa.20085 - J. Thomas Beale, Thomas Y. Hou, and John S. Lowengrub,
*Growth rates for the linearized motion of fluid interfaces away from equilibrium*, Comm. Pure Appl. Math.**46**(1993), no. 9, 1269–1301. MR**1231428**, DOI 10.1002/cpa.3160460903 - Walter Craig,
*An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits*, Comm. Partial Differential Equations**10**(1985), no. 8, 787–1003. MR**795808**, DOI 10.1080/03605308508820396 - Guido Schneider and C. Eugene Wayne,
*The long-wave limit for the water wave problem. I. The case of zero surface tension*, Comm. Pure Appl. Math.**53**(2000), no. 12, 1475–1535. MR**1780702**, DOI 10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V - Daniel Coutand and Steve Shkoller,
*Motion of an elastic solid inside an incompressible viscous fluid*, Arch. Ration. Mech. Anal.**176**(2005), no. 1, 25–102. MR**2185858**, DOI 10.1007/s00205-004-0340-7 - Daniel Coutand and Steve Shkoller,
*The interaction between quasilinear elastodynamics and the Navier-Stokes equations*, Arch. Ration. Mech. Anal.**179**(2006), no. 3, 303–352. MR**2208319**, DOI 10.1007/s00205-005-0385-2 - Stefan Ebenfeld,
*$L^2$-regularity theory of linear strongly elliptic Dirichlet systems of order $2m$ with minimal regularity in the coefficients*, Quart. Appl. Math.**60**(2002), no. 3, 547–576. MR**1914441**, DOI 10.1090/qam/1914441 - David G. Ebin,
*The equations of motion of a perfect fluid with free boundary are not well posed*, Comm. Partial Differential Equations**12**(1987), no. 10, 1175–1201. MR**886344**, DOI 10.1080/03605308708820523 - David Lannes,
*Well-posedness of the water-waves equations*, J. Amer. Math. Soc.**18**(2005), no. 3, 605–654. MR**2138139**, DOI 10.1090/S0894-0347-05-00484-4 - Hans Lindblad,
*Well-posedness for the linearized motion of an incompressible liquid with free surface boundary*, Comm. Pure Appl. Math.**56**(2003), no. 2, 153–197. MR**1934619**, DOI 10.1002/cpa.10055 - Hans Lindblad,
*Well-posedness for the motion of an incompressible liquid with free surface boundary*, Ann. of Math. (2)**162**(2005), no. 1, 109–194. MR**2178961**, DOI 10.4007/annals.2005.162.109 - V. I. Nalimov,
*The Cauchy-Poisson problem*, Dinamika Splošn. Sredy**Vyp. 18 Dinamika Židkost. so Svobod. Granicami**(1974), 104–210, 254 (Russian). MR**0609882**
ShZe2006 J. Shatah, C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler’s equation, preprint, (2006).
- Ben Schweizer,
*On the three-dimensional Euler equations with a free boundary subject to surface tension*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**22**(2005), no. 6, 753–781. MR**2172858**, DOI 10.1016/j.anihpc.2004.11.001 - V. A. Solonnikov,
*Solvability of a problem on the evolution of a viscous incompressible fluid, bounded by a free surface, on a finite time interval*, Algebra i Analiz**3**(1991), no. 1, 222–257 (Russian); English transl., St. Petersburg Math. J.**3**(1992), no. 1, 189–220. MR**1120848** - V. A. Solonnikov and V. E. Ščadilov,
*A certain boundary value problem for the stationary system of Navier-Stokes equations*, Trudy Mat. Inst. Steklov.**125**(1973), 196–210, 235 (Russian). Boundary value problems of mathematical physics, 8. MR**0364910** - Michael E. Taylor,
*Partial differential equations*, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. MR**1395147**, DOI 10.1007/978-1-4684-9320-7 - Sijue Wu,
*Well-posedness in Sobolev spaces of the full water wave problem in $2$-D*, Invent. Math.**130**(1997), no. 1, 39–72. MR**1471885**, DOI 10.1007/s002220050177 - Sijue Wu,
*Well-posedness in Sobolev spaces of the full water wave problem in 3-D*, J. Amer. Math. Soc.**12**(1999), no. 2, 445–495. MR**1641609**, DOI 10.1090/S0894-0347-99-00290-8 - Hideaki Yosihara,
*Gravity waves on the free surface of an incompressible perfect fluid of finite depth*, Publ. Res. Inst. Math. Sci.**18**(1982), no. 1, 49–96. MR**660822**, DOI 10.2977/prims/1195184016

## Additional Information

**Daniel Coutand**- Affiliation: Department of Mathematics, University of California at Davis, Davis, California 95616
- Email: coutand@math.ucdavis.edu
**Steve Shkoller**- Affiliation: Department of Mathematics, University of California at Davis, Davis, California 95616
- MR Author ID: 353659
- Email: shkoller@math.ucdavis.edu
- Received by editor(s): November 9, 2005
- Published electronically: March 5, 2007
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**20**(2007), 829-930 - MSC (2000): Primary 35Q35, 35R35, 35Q05, 76B03
- DOI: https://doi.org/10.1090/S0894-0347-07-00556-5
- MathSciNet review: 2291920