Finite group extensions and the Atiyah conjecture
HTML articles powered by AMS MathViewer
- by Peter Linnell and Thomas Schick PDF
- J. Amer. Math. Soc. 20 (2007), 1003-1051 Request permission
Abstract:
The Atiyah conjecture for a discrete group $G$ states that the $L^2$-Betti numbers of a finite CW-complex with fundamental group $G$ are integers if $G$ is torsion-free, and in general that they are rational numbers with denominators determined by the finite subgroups of $G$. Here we establish conditions under which the Atiyah conjecture for a torsion-free group $G$ implies the Atiyah conjecture for every finite extension of $G$. The most important requirement is that $H^*(G,\mathbb {Z}/p)$ is isomorphic to the cohomology of the $p$-adic completion of $G$ for every prime number $p$. An additional assumption is necessary e.g. that the quotients of the lower central series or of the derived series are torsion-free. We prove that these conditions are fulfilled for a certain class of groups, which contains in particular Artin’s pure braid groups (and more generally fundamental groups of fiber-type arrangements), free groups, fundamental groups of orientable compact surfaces, certain knot and link groups, certain primitive one-relator groups, and products of these. Therefore every finite, in fact every elementary amenable extension of these groups satisfies the Atiyah conjecture, provided the group does. As a consequence, if such an extension $H$ is torsion-free, then the group ring $\mathbb {C}H$ contains no non-trivial zero divisors, i.e. $H$ fulfills the zero-divisor conjecture. In the course of the proof we prove that if these extensions are torsion-free, then they have plenty of non-trivial torsion-free quotients which are virtually nilpotent. All of this applies in particular to Artin’s full braid group, therefore answering question B6 on http://www.grouptheory.info. Our methods also apply to the Baum-Connes conjecture. This is discussed by Thomas Schick in his preprint “Finite group extensions and the Baum-Connes conjecture”, where for example the Baum-Connes conjecture is proved for the full braid groups.References
- Alejandro Adem and R. James Milgram, Cohomology of finite groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 1994. MR 1317096, DOI 10.1007/978-3-662-06282-1
- M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Astérisque, No. 32-33, Soc. Math. France, Paris, 1976, pp. 43–72. MR 0420729
- G. Baumslag, E. Dyer, and A. Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980), no. 1, 1–47. MR 549702, DOI 10.1016/0022-4049(80)90040-7
- Roberta Botto Mura and Akbar Rhemtulla, Orderable groups, Lecture Notes in Pure and Applied Mathematics, Vol. 27, Marcel Dekker, Inc., New York-Basel, 1977. MR 0491396
- Nicolas Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1972 edition. MR 979760
- Clemens Bratzler. $L^2$-Betti Zahlen und Faserungen. Diplomarbeit, Universität Mainz, 1997. http://wwwmath.uni-muenster.de/u/lueck/group/bratzler.dvi.
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091
- Warren Dicks and Thomas Schick, The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedicata 93 (2002), 121–137. MR 1934693, DOI 10.1023/A:1020381532489
- Jozef Dodziuk, de Rham-Hodge theory for $L^{2}$-cohomology of infinite coverings, Topology 16 (1977), no. 2, 157–165. MR 445560, DOI 10.1016/0040-9383(77)90013-1
- Józef Dodziuk, Peter Linnell, Varghese Mathai, Thomas Schick, and Stuart Yates, Approximating $L^2$-invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (2003), no. 7, 839–873. Dedicated to the memory of Jürgen K. Moser. MR 1990479, DOI 10.1002/cpa.10076
- David S. Dummit and Richard M. Foote, Abstract algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991. MR 1138725
- Toshitake Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), no. 1, 57–75 (French). MR 808109, DOI 10.1007/BF01394779
- Michael Falk and Richard Randell, Pure braid groups and products of free groups, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 217–228. MR 975081, DOI 10.1090/conm/078/975081
- R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, and B. Wiest, Ordering the braid groups, Pacific J. Math. 191 (1999), no. 1, 49–74. MR 1725462, DOI 10.2140/pjm.1999.191.49
- Rostislav I. Grigorchuk, Peter Linnell, Thomas Schick, and Andrzej Żuk, On a question of Atiyah, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 9, 663–668 (English, with English and French summaries). MR 1797748, DOI 10.1016/S0764-4442(00)01702-X
- M. Gromov, Kähler hyperbolicity and $L_2$-Hodge theory, J. Differential Geom. 33 (1991), no. 1, 263–292. MR 1085144, DOI 10.4310/jdg/1214446039
- K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29–62. MR 87652, DOI 10.1112/plms/s3-7.1.29
- P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787–801. MR 105441, DOI 10.1215/ijm/1255448649
- John Hempel, Residual finiteness for $3$-manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 379–396. MR 895623
- K. A. Hirsch. On infinite soluble groups. II. Proc. London Math. Soc. (2), 44:336–344, 1938.
- Ian Hughes, Division rings of fractions for group rings, Comm. Pure Appl. Math. 23 (1970), 181–188. MR 263934, DOI 10.1002/cpa.3160230205
- Ian Hughes, Division rings of fractions for group rings. II, Comm. Pure Appl. Math. 25 (1972), 127–131. MR 292956, DOI 10.1002/cpa.3160250202
- Stephen P. Humphries, Torsion-free quotients of braid groups, Internat. J. Algebra Comput. 11 (2001), no. 3, 363–373. MR 1847185, DOI 10.1142/S0218196701000590
- Stefan Jackowski, A fixed-point theorem for $p$-group actions, Proc. Amer. Math. Soc. 102 (1988), no. 1, 205–208. MR 915745, DOI 10.1090/S0002-9939-1988-0915745-9
- William Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. MR 565450, DOI 10.1090/cbms/043
- Nathan Jacobson, Basic algebra. II, 2nd ed., W. H. Freeman and Company, New York, 1989. MR 1009787
- S. O. Kochman, Bordism, stable homotopy and Adams spectral sequences, Fields Institute Monographs, vol. 7, American Mathematical Society, Providence, RI, 1996. MR 1407034, DOI 10.1090/fim/007
- P. H. Kropholler, P. A. Linnell, and J. A. Moody, Applications of a new $K$-theoretic theorem to soluble group rings, Proc. Amer. Math. Soc. 104 (1988), no. 3, 675–684. MR 964842, DOI 10.1090/S0002-9939-1988-0964842-0
- Inga Kümpel, Peter Linnell, and Thomas Schick. Galois cohomology of completed link groups. in preparation.
- John P. Labute, Algèbres de Lie et pro-$p$-groupes définis par une seule relation, Invent. Math. 4 (1967), 142–158 (French). MR 218495, DOI 10.1007/BF01425247
- John P. Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16–23. MR 251111, DOI 10.1016/0021-8693(70)90130-4
- John P. Labute, The Lie algebra associated to the lower central series of a link group and Murasugi’s conjecture, Proc. Amer. Math. Soc. 109 (1990), no. 4, 951–956. MR 1013973, DOI 10.1090/S0002-9939-1990-1013973-7
- V. Lin. Braids, permutations, polynomials I. Preprint, Max Planck Institut für Mathematik, Bonn, 112 pages, 1996.
- Peter A. Linnell, Division rings and group von Neumann algebras, Forum Math. 5 (1993), no. 6, 561–576. MR 1242889, DOI 10.1515/form.1993.5.561
- Peter A. Linnell, Analytic versions of the zero divisor conjecture, Geometry and cohomology in group theory (Durham, 1994) London Math. Soc. Lecture Note Ser., vol. 252, Cambridge Univ. Press, Cambridge, 1998, pp. 209–248. MR 1709960, DOI 10.1017/CBO9780511666131.015
- Wolfgang Lück, Transformation groups and algebraic $K$-theory, Lecture Notes in Mathematics, vol. 1408, Springer-Verlag, Berlin, 1989. Mathematica Gottingensis. MR 1027600, DOI 10.1007/BFb0083681
- Wolfgang Lück, $L^2$-invariants of regular coverings of compact manifolds and CW-complexes, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 735–817. MR 1886681
- Wolfgang Lück, Thomas Schick, and Thomas Thielmann, Torsion and fibrations, J. Reine Angew. Math. 498 (1998), 1–33. MR 1629917, DOI 10.1515/crll.1998.050
- R. C. Lyndon, Two notes on nilpotent groups, Proc. Amer. Math. Soc. 3 (1952), 579–583. MR 49889, DOI 10.1090/S0002-9939-1952-0049889-9
- Wilhelm Magnus. Über beziehungen zwischen höheren Kommutatoren. J. Reine Angew. Math., 177:105–115, 1937.
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI 10.2307/1970113
- Donald S. Passman, Infinite crossed products, Pure and Applied Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR 979094
- Holger Reich. Group von Neumann algebras and related algebras. Ph.D. thesis, Universität Göttingen, 1999. http://www.math.uni-muenster.de/u/lueck/publ/diplome/reich.dvi.
- Dale Rolfsen and Jun Zhu, Braids, orderings and zero divisors, J. Knot Theory Ramifications 7 (1998), no. 6, 837–841. MR 1643939, DOI 10.1142/S0218216598000425
- Thomas Schick. Finite group extensions and the Baum-Connes conjecture. preprint, available via http://arXiv/math.KT/0209165.
- Thomas Schick, Integrality of $L^2$-Betti numbers, Math. Ann. 317 (2000), no. 4, 727–750. MR 1777117, DOI 10.1007/PL00004421
- Thomas Schick, Integrality of $L^2$-Betti numbers, Math. Ann. 317 (2000), no. 4, 727–750. MR 1777117, DOI 10.1007/PL00004421
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. MR 1466966, DOI 10.1007/978-3-642-59141-9
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI 10.1016/0021-8693(65)90017-7
- Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR 0385836, DOI 10.1007/978-3-642-61923-6
- John S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. MR 1691054
Additional Information
- Peter Linnell
- Affiliation: Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061-0123
- MR Author ID: 114455
- Email: linnell@math.vt.edu
- Thomas Schick
- Affiliation: Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstr. 3-5, 37073 Göttingen, Germany
- MR Author ID: 635784
- Email: schick@uni-math.gwdg.de
- Received by editor(s): May 31, 2005
- Published electronically: March 14, 2007
- Additional Notes: The first author was partially supported by SFB 478, Münster
Research of the second author was funded by DAAD (German Academic Exchange Agency) - © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 1003-1051
- MSC (2000): Primary 55N25, 16S34, 57M25
- DOI: https://doi.org/10.1090/S0894-0347-07-00561-9
- MathSciNet review: 2328714