Tropical discriminants
HTML articles powered by AMS MathViewer
- by Alicia Dickenstein, Eva Maria Feichtner and Bernd Sturmfels;
- J. Amer. Math. Soc. 20 (2007), 1111-1133
- DOI: https://doi.org/10.1090/S0894-0347-07-00562-0
- Published electronically: April 23, 2007
- PDF | Request permission
Abstract:
Tropical geometry is used to develop a new approach to the theory of discriminants and resultants in the sense of Gel$’$fand, Kapranov and Zelevinsky. The tropical $A$-discriminant is the tropicalization of the dual variety of the projective toric variety given by an integer matrix $A$. This tropical algebraic variety is shown to coincide with the Minkowski sum of the row space of $A$ and the tropicalization of the kernel of $A$. This leads to an explicit positive formula for all the extreme monomials of any $A$-discriminant.References
- Federico Ardila and Caroline J. Klivans, The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B 96 (2006), no. 1, 38–49. MR 2185977, DOI 10.1016/j.jctb.2005.06.004
- Robert Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168–195. MR 733052
- T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, and R. R. Thomas, Computing tropical varieties, J. Symbolic Comput. 42 (2007), no. 1-2, 54–73. MR 2284285, DOI 10.1016/j.jsc.2006.02.004
- Eduardo Cattani, Alicia Dickenstein, and Bernd Sturmfels, Rational hypergeometric functions, Compositio Math. 128 (2001), no. 2, 217–239. MR 1850183, DOI 10.1023/A:1017541231618
- C. De Concini and C. Procesi, Hyperplane arrangements and holonomy equations, Selecta Math. (N.S.) 1 (1995), no. 3, 495–535. MR 1366623, DOI 10.1007/BF01589497
- Alicia Dickenstein and Bernd Sturmfels, Elimination theory in codimension 2, J. Symbolic Comput. 34 (2002), no. 2, 119–135. MR 1930829, DOI 10.1006/jsco.2002.0545
- Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139–157. MR 2289207, DOI 10.1515/CRELLE.2006.097
- Eva-Maria Feichtner and Dmitry N. Kozlov, Incidence combinatorics of resolutions, Selecta Math. (N.S.) 10 (2004), no. 1, 37–60. MR 2061222, DOI 10.1007/s00029-004-0298-1
- Eva Maria Feichtner and Irene Müller, On the topology of nested set complexes, Proc. Amer. Math. Soc. 133 (2005), no. 4, 999–1006. MR 2117200, DOI 10.1090/S0002-9939-04-07731-7
- Eva Maria Feichtner and Bernd Sturmfels, Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.) 62 (2005), no. 4, 437–468. MR 2191630
- Eva Maria Feichtner and Sergey Yuzvinsky, Chow rings of toric varieties defined by atomic lattices, Invent. Math. 155 (2004), no. 3, 515–536. MR 2038195, DOI 10.1007/s00222-003-0327-2 GM A. Gathmann, H. Markwig: The numbers of tropical plane curves through points in general position; Journal für die reine und angewandte Mathematik, to appear, arXiv:math.AG/0504390.
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417, DOI 10.1007/978-0-8176-4771-1
- J. P. Jouanolou, Idéaux résultants, Adv. in Math. 37 (1980), no. 3, 212–238 (French). MR 591727, DOI 10.1016/0001-8708(80)90034-1
- Michael Kalkbrener and Bernd Sturmfels, Initial complexes of prime ideals, Adv. Math. 116 (1995), no. 2, 365–376. MR 1363769, DOI 10.1006/aima.1995.1071
- M. M. Kapranov, A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map, Math. Ann. 290 (1991), no. 2, 277–285. MR 1109634, DOI 10.1007/BF01459245 EK E. Katz: The tropical degree of cones in the secondary fan, math.AG/ 0604290.
- Grigory Mikhalkin, Enumerative tropical algebraic geometry in $\Bbb R^2$, J. Amer. Math. Soc. 18 (2005), no. 2, 313–377. MR 2137980, DOI 10.1090/S0894-0347-05-00477-7
- Jürgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald, First steps in tropical geometry, Idempotent mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, 2005, pp. 289–317. MR 2149011, DOI 10.1090/conm/377/06998 Spe D. Speyer: Tropical Geometry; Ph.D. Dissertation, University of California at Berkeley, 2005.
- David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411. MR 2071813, DOI 10.1515/advg.2004.023
- Bernd Sturmfels, On the Newton polytope of the resultant, J. Algebraic Combin. 3 (1994), no. 2, 207–236. MR 1268576, DOI 10.1023/A:1022497624378
- Bernd Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2002. MR 1925796, DOI 10.1090/cbms/097 Tev E. Tevelev: Compactifications of subvarieties of tori; American Journal of Mathematics, to appear, arXiv:math.AG/0412329.
Bibliographic Information
- Alicia Dickenstein
- Affiliation: Departamento de Matemática, FCEN, Universidad de Buenos Aires, (1428) B. Aires, Argentina
- MR Author ID: 57755
- Email: alidick@dm.uba.ar
- Eva Maria Feichtner
- Affiliation: Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland
- Address at time of publication: Department of Mathematics, University of Stuttgart, 70569 Stuttgart, Germany
- Email: feichtne@igt.uni-stuttgart.de
- Bernd Sturmfels
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- MR Author ID: 238151
- Email: bernd@math.berkeley.edu
- Received by editor(s): November 8, 2005
- Published electronically: April 23, 2007
- Additional Notes: The first author was partially supported by UBACYT X042, CONICET PIP 5617 and ANPCYT 17-20569, Argentina.
The second author was supported by a Research Professorship of the Swiss National Science Foundation, PP002–106403/1.
The last author was partially supported by the U.S. National Science Foundation, DMS-0456960. - © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 1111-1133
- MSC (2000): Primary 14M25; Secondary 52B20
- DOI: https://doi.org/10.1090/S0894-0347-07-00562-0
- MathSciNet review: 2328718
Dedicated: Dedicated to the memory of Pilar Pisón Casares