Tropical discriminants
Authors:
Alicia Dickenstein, Eva Maria Feichtner and Bernd Sturmfels
Journal:
J. Amer. Math. Soc. 20 (2007), 1111-1133
MSC (2000):
Primary 14M25; Secondary 52B20
DOI:
https://doi.org/10.1090/S0894-0347-07-00562-0
Published electronically:
April 23, 2007
MathSciNet review:
2328718
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Tropical geometry is used to develop a new approach to the theory of discriminants and resultants in the sense of Gel$’$fand, Kapranov and Zelevinsky. The tropical $A$-discriminant is the tropicalization of the dual variety of the projective toric variety given by an integer matrix $A$. This tropical algebraic variety is shown to coincide with the Minkowski sum of the row space of $A$ and the tropicalization of the kernel of $A$. This leads to an explicit positive formula for all the extreme monomials of any $A$-discriminant.
- Federico Ardila and Caroline J. Klivans, The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B 96 (2006), no. 1, 38–49. MR 2185977, DOI https://doi.org/10.1016/j.jctb.2005.06.004
- Robert Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168–195. MR 733052
- T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, and R. R. Thomas, Computing tropical varieties, J. Symbolic Comput. 42 (2007), no. 1-2, 54–73. MR 2284285, DOI https://doi.org/10.1016/j.jsc.2006.02.004
- Eduardo Cattani, Alicia Dickenstein, and Bernd Sturmfels, Rational hypergeometric functions, Compositio Math. 128 (2001), no. 2, 217–239. MR 1850183, DOI https://doi.org/10.1023/A%3A1017541231618
- C. De Concini and C. Procesi, Hyperplane arrangements and holonomy equations, Selecta Math. (N.S.) 1 (1995), no. 3, 495–535. MR 1366623, DOI https://doi.org/10.1007/BF01589497
- Alicia Dickenstein and Bernd Sturmfels, Elimination theory in codimension 2, J. Symbolic Comput. 34 (2002), no. 2, 119–135. MR 1930829, DOI https://doi.org/10.1006/jsco.2002.0545
- Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139–157. MR 2289207, DOI https://doi.org/10.1515/CRELLE.2006.097
- Eva-Maria Feichtner and Dmitry N. Kozlov, Incidence combinatorics of resolutions, Selecta Math. (N.S.) 10 (2004), no. 1, 37–60. MR 2061222, DOI https://doi.org/10.1007/s00029-004-0298-1
- Eva Maria Feichtner and Irene Müller, On the topology of nested set complexes, Proc. Amer. Math. Soc. 133 (2005), no. 4, 999–1006. MR 2117200, DOI https://doi.org/10.1090/S0002-9939-04-07731-7
- Eva Maria Feichtner and Bernd Sturmfels, Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.) 62 (2005), no. 4, 437–468. MR 2191630
- Eva Maria Feichtner and Sergey Yuzvinsky, Chow rings of toric varieties defined by atomic lattices, Invent. Math. 155 (2004), no. 3, 515–536. MR 2038195, DOI https://doi.org/10.1007/s00222-003-0327-2 GM A. Gathmann, H. Markwig: The numbers of tropical plane curves through points in general position; Journal für die reine und angewandte Mathematik, to appear, arXiv:math.AG/0504390.
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
- J. P. Jouanolou, Idéaux résultants, Adv. in Math. 37 (1980), no. 3, 212–238 (French). MR 591727, DOI https://doi.org/10.1016/0001-8708%2880%2990034-1
- Michael Kalkbrener and Bernd Sturmfels, Initial complexes of prime ideals, Adv. Math. 116 (1995), no. 2, 365–376. MR 1363769, DOI https://doi.org/10.1006/aima.1995.1071
- M. M. Kapranov, A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map, Math. Ann. 290 (1991), no. 2, 277–285. MR 1109634, DOI https://doi.org/10.1007/BF01459245 EK E. Katz: The tropical degree of cones in the secondary fan, math.AG/ 0604290.
- Grigory Mikhalkin, Enumerative tropical algebraic geometry in $\Bbb R^2$, J. Amer. Math. Soc. 18 (2005), no. 2, 313–377. MR 2137980, DOI https://doi.org/10.1090/S0894-0347-05-00477-7
- Jürgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald, First steps in tropical geometry, Idempotent mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, 2005, pp. 289–317. MR 2149011, DOI https://doi.org/10.1090/conm/377/06998 Spe D. Speyer: Tropical Geometry; Ph.D. Dissertation, University of California at Berkeley, 2005.
- David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411. MR 2071813, DOI https://doi.org/10.1515/advg.2004.023
- Bernd Sturmfels, On the Newton polytope of the resultant, J. Algebraic Combin. 3 (1994), no. 2, 207–236. MR 1268576, DOI https://doi.org/10.1023/A%3A1022497624378
- Bernd Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2002. MR 1925796 Tev E. Tevelev: Compactifications of subvarieties of tori; American Journal of Mathematics, to appear, arXiv:math.AG/0412329.
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14M25, 52B20
Retrieve articles in all journals with MSC (2000): 14M25, 52B20
Additional Information
Alicia Dickenstein
Affiliation:
Departamento de Matemática, FCEN, Universidad de Buenos Aires, (1428) B. Aires, Argentina
MR Author ID:
57755
Email:
alidick@dm.uba.ar
Eva Maria Feichtner
Affiliation:
Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland
Address at time of publication:
Department of Mathematics, University of Stuttgart, 70569 Stuttgart, Germany
Email:
feichtne@igt.uni-stuttgart.de
Bernd Sturmfels
Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720
MR Author ID:
238151
Email:
bernd@math.berkeley.edu
Keywords:
Tropical geometry,
dual variety,
discriminant.
Received by editor(s):
November 8, 2005
Published electronically:
April 23, 2007
Additional Notes:
The first author was partially supported by UBACYT X042, CONICET PIP 5617 and ANPCYT 17-20569, Argentina.
The second author was supported by a Research Professorship of the Swiss National Science Foundation, PP002–106403/1.
The last author was partially supported by the U.S. National Science Foundation, DMS-0456960.
Dedicated:
Dedicated to the memory of Pilar Pisón Casares
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.