Tropical discriminants
Authors:
Alicia Dickenstein, Eva Maria Feichtner and Bernd Sturmfels
Journal:
J. Amer. Math. Soc. 20 (2007), 1111-1133
MSC (2000):
Primary 14M25; Secondary 52B20
DOI:
https://doi.org/10.1090/S0894-0347-07-00562-0
Published electronically:
April 23, 2007
MathSciNet review:
2328718
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Tropical geometry is used to develop a new approach to the theory of discriminants and resultants in the sense of Gelfand, Kapranov and Zelevinsky. The tropical
-discriminant is the tropicalization of the dual variety of the projective toric variety given by an integer matrix
. This tropical algebraic variety is shown to coincide with the Minkowski sum of the row space of
and the tropicalization of the kernel of
. This leads to an explicit positive formula for all the extreme monomials of any
-discriminant.
- 1. Federico Ardila and Caroline J. Klivans, The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B 96 (2006), no. 1, 38–49. MR 2185977, https://doi.org/10.1016/j.jctb.2005.06.004
- 2. Robert Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984), 168–195. MR 733052
- 3. T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, and R. R. Thomas, Computing tropical varieties, J. Symbolic Comput. 42 (2007), no. 1-2, 54–73. MR 2284285, https://doi.org/10.1016/j.jsc.2006.02.004
- 4. Eduardo Cattani, Alicia Dickenstein, and Bernd Sturmfels, Rational hypergeometric functions, Compositio Math. 128 (2001), no. 2, 217–239. MR 1850183, https://doi.org/10.1023/A:1017541231618
- 5. C. De Concini and C. Procesi, Hyperplane arrangements and holonomy equations, Selecta Math. (N.S.) 1 (1995), no. 3, 495–535. MR 1366623, https://doi.org/10.1007/BF01589497
- 6. Alicia Dickenstein and Bernd Sturmfels, Elimination theory in codimension 2, J. Symbolic Comput. 34 (2002), no. 2, 119–135. MR 1930829, https://doi.org/10.1006/jsco.2002.0545
- 7. Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139–157. MR 2289207, https://doi.org/10.1515/CRELLE.2006.097
- 8. Eva-Maria Feichtner and Dmitry N. Kozlov, Incidence combinatorics of resolutions, Selecta Math. (N.S.) 10 (2004), no. 1, 37–60. MR 2061222, https://doi.org/10.1007/s00029-004-0298-1
- 9. Eva Maria Feichtner and Irene Müller, On the topology of nested set complexes, Proc. Amer. Math. Soc. 133 (2005), no. 4, 999–1006. MR 2117200, https://doi.org/10.1090/S0002-9939-04-07731-7
- 10. Eva Maria Feichtner and Bernd Sturmfels, Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.) 62 (2005), no. 4, 437–468. MR 2191630
- 11. Eva Maria Feichtner and Sergey Yuzvinsky, Chow rings of toric varieties defined by atomic lattices, Invent. Math. 155 (2004), no. 3, 515–536. MR 2038195, https://doi.org/10.1007/s00222-003-0327-2
- 12. A. Gathmann, H. Markwig: The numbers of tropical plane curves through points in general position; Journal für die reine und angewandte Mathematik, to appear, math.AG/0504390.
- 13. I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
- 14. J. P. Jouanolou, Idéaux résultants, Adv. in Math. 37 (1980), no. 3, 212–238 (French). MR 591727, https://doi.org/10.1016/0001-8708(80)90034-1
- 15. Michael Kalkbrener and Bernd Sturmfels, Initial complexes of prime ideals, Adv. Math. 116 (1995), no. 2, 365–376. MR 1363769, https://doi.org/10.1006/aima.1995.1071
- 16. M. M. Kapranov, A characterization of 𝐴-discriminantal hypersurfaces in terms of the logarithmic Gauss map, Math. Ann. 290 (1991), no. 2, 277–285. MR 1109634, https://doi.org/10.1007/BF01459245
- 17. E. Katz: The tropical degree of cones in the secondary fan, math.AG/ 0604290.
- 18. Grigory Mikhalkin, Enumerative tropical algebraic geometry in ℝ², J. Amer. Math. Soc. 18 (2005), no. 2, 313–377. MR 2137980, https://doi.org/10.1090/S0894-0347-05-00477-7
- 19. Jürgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald, First steps in tropical geometry, Idempotent mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, 2005, pp. 289–317. MR 2149011, https://doi.org/10.1090/conm/377/06998
- 20. D. Speyer: Tropical Geometry; Ph.D. Dissertation, University of California at Berkeley, 2005.
- 21. David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411. MR 2071813, https://doi.org/10.1515/advg.2004.023
- 22. Bernd Sturmfels, On the Newton polytope of the resultant, J. Algebraic Combin. 3 (1994), no. 2, 207–236. MR 1268576, https://doi.org/10.1023/A:1022497624378
- 23. Bernd Sturmfels, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2002. MR 1925796
- 24. E. Tevelev: Compactifications of subvarieties of tori; American Journal of Mathematics, to appear, math.AG/0412329.
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14M25, 52B20
Retrieve articles in all journals with MSC (2000): 14M25, 52B20
Additional Information
Alicia Dickenstein
Affiliation:
Departamento de Matemática, FCEN, Universidad de Buenos Aires, (1428) B. Aires, Argentina
Email:
alidick@dm.uba.ar
Eva Maria Feichtner
Affiliation:
Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland
Address at time of publication:
Department of Mathematics, University of Stuttgart, 70569 Stuttgart, Germany
Email:
feichtne@igt.uni-stuttgart.de
Bernd Sturmfels
Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720
Email:
bernd@math.berkeley.edu
DOI:
https://doi.org/10.1090/S0894-0347-07-00562-0
Keywords:
Tropical geometry,
dual variety,
discriminant.
Received by editor(s):
November 8, 2005
Published electronically:
April 23, 2007
Additional Notes:
The first author was partially supported by UBACYT X042, CONICET PIP 5617 and ANPCYT 17-20569, Argentina.
The second author was supported by a Research Professorship of the Swiss National Science Foundation, PP002–106403/1.
The last author was partially supported by the U.S. National Science Foundation, DMS-0456960.
Dedicated:
Dedicated to the memory of Pilar Pisón Casares
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.