The module structure of a group action on a polynomial ring: A finiteness theorem
HTML articles powered by AMS MathViewer
- by Dikran B. Karagueuzian and Peter Symonds;
- J. Amer. Math. Soc. 20 (2007), 931-967
- DOI: https://doi.org/10.1090/S0894-0347-07-00563-2
- Published electronically: April 11, 2007
- PDF | Request permission
Abstract:
Consider a group acting on a polynomial ring over a finite field. We study the polynomial ring as a module for the group and prove a structure theorem with several striking corollaries. For example, any indecomposable module that appears as a summand must also appear in low degree, and so the number of isomorphism types of such summands is finite. There are also applications to invariant theory, giving a priori bounds on the degrees of the generators.References
- Gert Almkvist and Robert Fossum, Decomposition of exterior and symmetric powers of indecomposable $\textbf {Z}/p\textbf {Z}$-modules in characteristic $p$ and relations to invariants, Séminaire d’Algèbre Paul Dubreil, 30ème année (Paris, 1976–1977) Lecture Notes in Math., Vol. 641, Springer, Berlin-New York, 1978, pp. 1–111. MR 499459
- J. Alperin and L. G. Kovacs, Periodicity of Weyl modules for $\textrm {SL}(2,\,q)$, J. Algebra 74 (1982), no. 1, 52–54. MR 644217, DOI 10.1016/0021-8693(82)90004-7 BC Bleher, F.M. and Chinburg, T., Galois structure of homogeneous coordinate rings, Trans. Amer. Math. Soc. (to appear).
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Roger M. Bryant, Symmetric powers of representations of finite groups, J. Algebra 154 (1993), no. 2, 416–436. MR 1206130, DOI 10.1006/jabr.1993.1023
- H. E. A. Campbell and I. P. Hughes, The ring of upper triangular invariants as a module over the Dickson invariants, Math. Ann. 306 (1996), no. 3, 429–443. MR 1415072, DOI 10.1007/BF01445259
- Harm Derksen and Gregor Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups, I, Springer-Verlag, Berlin, 2002. Encyclopaedia of Mathematical Sciences, 130. MR 1918599, DOI 10.1007/978-3-662-04958-7
- Stephen R. Doty, The submodule structure of certain Weyl modules for groups of type $A_n$, J. Algebra 95 (1985), no. 2, 373–383. MR 801273, DOI 10.1016/0021-8693(85)90109-7
- Grete Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), no. 1, 736–788 (German). MR 1512302, DOI 10.1007/BF01206635
- Roger Howe, Asymptotics of dimensions of invariants for finite groups, J. Algebra 122 (1989), no. 2, 374–379. MR 999080, DOI 10.1016/0021-8693(89)90223-8
- Dikran B. Karagueuzian and Peter Symonds, The module structure of a group action on a polynomial ring, J. Algebra 218 (1999), no. 2, 672–692. MR 1705758, DOI 10.1006/jabr.1999.7867
- D. B. Karagueuzian and P. Symonds, The module structure of a group action on a polynomial ring: examples, generalizations, and applications, Invariant theory in all characteristics, CRM Proc. Lecture Notes, vol. 35, Amer. Math. Soc., Providence, RI, 2004, pp. 139–158. MR 2066462, DOI 10.1090/crmp/035/08
- D. J. Glover, A study of certain modular representations, J. Algebra 51 (1978), no. 2, 425–475. MR 476841, DOI 10.1016/0021-8693(78)90116-3
- Ian Hughes and Gregor Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm. Algebra 28 (2000), no. 4, 2059–2088. MR 1747371, DOI 10.1080/00927870008826944
- Ian Hughes and Gregor Kemper, Symmetric powers of modular representations for groups with a Sylow subgroup of prime order, J. Algebra 241 (2001), no. 2, 759–788. MR 1843324, DOI 10.1006/jabr.2000.8710
- Huỳnh Mui, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 3, 319–369. MR 422451
- R. James Shank and David L. Wehlau, The transfer in modular invariant theory, J. Pure Appl. Algebra 142 (1999), no. 1, 63–77. MR 1716047, DOI 10.1016/S0022-4049(98)00036-X
- Peter Symonds, Group action on polynomial and power series rings, Pacific J. Math. 195 (2000), no. 1, 225–230. MR 1781621, DOI 10.2140/pjm.2000.195.225 Sy2 Symonds, P., Cyclic group actions on polynomial rings, to appear in Bull. London Math. Soc. Sy3 Symonds, P., Structure theorems over polynomial rings, Advances in Math. 208 (2007), pp. 408–421.
Bibliographic Information
- Dikran B. Karagueuzian
- Affiliation: Mathematics Department, Binghamton University, P.O. Box 6000, Binghamton, New York 13902-6000
- Email: dikran@math.binghamton.edu
- Peter Symonds
- Affiliation: School of Mathematics, University of Manchester, P.O. Box 88, Manchester M60 1QD, United Kingdom
- Email: Peter.Symonds@manchester.ac.uk
- Received by editor(s): March 17, 2005
- Published electronically: April 11, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 931-967
- MSC (2000): Primary 16W22; Secondary 20C20
- DOI: https://doi.org/10.1090/S0894-0347-07-00563-2
- MathSciNet review: 2328711