An algebro-geometric proof of Witten’s conjecture
HTML articles powered by AMS MathViewer
- by M. E. Kazarian and S. K. Lando;
- J. Amer. Math. Soc. 20 (2007), 1079-1089
- DOI: https://doi.org/10.1090/S0894-0347-07-00566-8
- Published electronically: March 23, 2007
- PDF | Request permission
Abstract:
We present a new proof of Witten’s conjecture. The proof is based on the analysis of the relationship between intersection indices on moduli spaces of complex curves and Hurwitz numbers enumerating ramified coverings of the $2$-sphere.References
- V. I. Arnol′d, Topological classification of complex trigonometric polynomials and the combinatorics of graphs with an identical number of vertices and edges, Funktsional. Anal. i Prilozhen. 30 (1996), no. 1, 1–17, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 30 (1996), no. 1, 1–14. MR 1387484, DOI 10.1007/BF02383392
- Etsur\B{o} Date, Masaki Kashiwara, Michio Jimbo, and Tetsuji Miwa, Transformation groups for soliton equations, Nonlinear integrable systems—classical theory and quantum theory (Kyoto, 1981) World Sci. Publishing, Singapore, 1983, pp. 39–119. MR 725700
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein, On Hurwitz numbers and Hodge integrals, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 12, 1175–1180 (English, with English and French summaries). MR 1701381, DOI 10.1016/S0764-4442(99)80435-2
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), no. 2, 297–327. MR 1864018, DOI 10.1007/s002220100164
- I. P. Goulden and D. M. Jackson, Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc. 125 (1997), no. 1, 51–60. MR 1396978, DOI 10.1090/S0002-9939-97-03880-X
- I. P. Goulden, D. M. Jackson, and R. Vakil, The Gromov-Witten potential of a point, Hurwitz numbers, and Hodge integrals, Proc. London Math. Soc. (3) 83 (2001), no. 3, 563–581. MR 1851082, DOI 10.1112/plms/83.3.563
- V. Kac and A. Schwarz, Geometric interpretation of the partition function of $2$D gravity, Phys. Lett. B 257 (1991), no. 3-4, 329–334. MR 1100639, DOI 10.1016/0370-2693(91)91901-7
- Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23. MR 1171758, DOI 10.1007/BF02099526
- Sergei K. Lando and Alexander K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, vol. 141, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier; Low-Dimensional Topology, II. MR 2036721, DOI 10.1007/978-3-540-38361-1
- Maryam Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20 (2007), no. 1, 1–23. MR 2257394, DOI 10.1090/S0894-0347-06-00526-1
- Andrei Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), no. 4, 447–453. MR 1783622, DOI 10.4310/MRL.2000.v7.n4.a10 OP A. Okounkov, R. Pandharipande, Gromov–Witten theory, Hurwitz numbers, and matrix models I, math.AG/0101147 (2001).
- R. Pandharipande, The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys. 53 (2000), no. 1, 59–74. MR 1799843, DOI 10.1023/A:1026571018707
- Mikio Sato and Yasuko Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, Nonlinear partial differential equations in applied science (Tokyo, 1982) North-Holland Math. Stud., vol. 81, North-Holland, Amsterdam, 1983, pp. 259–271. MR 730247
- Graeme Segal and George Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5–65. MR 783348, DOI 10.1007/BF02698802
- S. V. Shadrin, Geometry of meromorphic functions and intersections on moduli spaces of curves, Int. Math. Res. Not. 38 (2003), 2051–2094. MR 1994776, DOI 10.1155/S1073792803212101
- Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 243–310. MR 1144529 Z D. Zvonkine, Enumeration of ramified coverings of the sphere and $2$-dimensional gravity, math.AG/0506248 (2005).
Bibliographic Information
- M. E. Kazarian
- Affiliation: Steklov Institute of Mathematics, Russian Academy of Sciences, 8 Gubkina Street, Moscow, 117966 Russia, and The Poncelet Laboratory, Independent University of Moscow, 11, Bolshoy Vlasyevskiy Pereulok, Moscow, 121002 Russia
- Email: kazarian@mccme.ru
- S. K. Lando
- Affiliation: Institute for System Research, Russian Academy of Sciences, Nakhimovskii pr., 36 korp. 1, Moscow, 117218 Russia, and The Poncelet Laboratory, Independent University of Moscow, 11, Bolshoy Vlasyevskiy Pereulok, Moscow, 121002 Russia
- Email: lando@mccme.ru
- Received by editor(s): August 5, 2005
- Published electronically: March 23, 2007
- Additional Notes: The first author was supported in part by the grants RFBR 04-01-00762, RFBR 05-01-01012-a, NWO-RFBR 047.011.2004.026 (RFBR 05-02-89000-NWOa), GIMP ANR-05-BLAN-0029-01.
The second author was supported in part by the grants ACI-NIM-2004-243 (Noeuds et tresses), RFBR 05-01-01012-a, NWO-RFBR 047.011.2004.026 (RFBR 05-02-89000-NWOa), GIMP ANR-05-BLAN-0029-01. - © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 20 (2007), 1079-1089
- MSC (2000): Primary 14H70; Secondary 14H10
- DOI: https://doi.org/10.1090/S0894-0347-07-00566-8
- MathSciNet review: 2328716