Rational points on compactifications of semi-simple groups
HTML articles powered by AMS MathViewer
- by Joseph Shalika, Ramin Takloo-Bighash and Yuri Tschinkel;
- J. Amer. Math. Soc. 20 (2007), 1135-1186
- DOI: https://doi.org/10.1090/S0894-0347-07-00572-3
- Published electronically: May 11, 2007
- PDF | Request permission
Abstract:
We prove Manin’s conjecture concerning the distribution of rational points of bounded height, and its refinement by Peyre, for wonderful compactifications of semi-simple algebraic groups over number fields. The proof proceeds via the study of the associated height zeta function and its spectral expansion.References
- James G. Arthur, A trace formula for reductive groups. I. Terms associated to classes in $G(\textbf {Q})$, Duke Math. J. 45 (1978), no. 4, 911–952. MR 518111
- James Arthur, A trace formula for reductive groups. II. Applications of a truncation operator, Compositio Math. 40 (1980), no. 1, 87–121. MR 558260
- James Arthur, On a family of distributions obtained from Eisenstein series. I. Application of the Paley-Wiener theorem, Amer. J. Math. 104 (1982), no. 6, 1243–1288. MR 681737, DOI 10.2307/2374061
- V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), no. 1-3, 27–43 (French). MR 1032922, DOI 10.1007/BF01453564
- Victor V. Batyrev and Yuri Tschinkel, Rational points of bounded height on compactifications of anisotropic tori, Internat. Math. Res. Notices 12 (1995), 591–635. MR 1369408, DOI 10.1155/S1073792895000365
- Victor V. Batyrev and Yuri Tschinkel, Manin’s conjecture for toric varieties, J. Algebraic Geom. 7 (1998), no. 1, 15–53. MR 1620682
- Victor V. Batyrev and Yuri Tschinkel, Tamagawa numbers of polarized algebraic varieties, Astérisque 251 (1998), 299–340. Nombre et répartition de points de hauteur bornée (Paris, 1996). MR 1679843
- Armand Borel and George D. Mostow (eds.), Proceedings of Symposia in Pure Mathematics. Vol. IX: Algebraic groups and discontinuous subgroups, American Mathematical Society, Providence, RI, 1966. MR 202512
- Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Math., Vol. 131, Springer, Berlin-New York, 1970, pp. 1–55. MR 258838
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712, DOI 10.1007/BF02684375
- M. Brion, Curves and divisors in spherical varieties, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 21–34. MR 1635672
- Michel Brion, Variétés sphériques et théorie de Mori, Duke Math. J. 72 (1993), no. 2, 369–404 (French). MR 1248677, DOI 10.1215/S0012-7094-93-07213-4
- W. Casselman, The unramified principal series of ${\mathfrak {p}}$-adic groups. I. The spherical function, Compositio Math. 40 (1980), no. 3, 387–406. MR 571057
- Antoine Chambert-Loir and Yuri Tschinkel, Fonctions zêta des hauteurs des espaces fibrés, Rational points on algebraic varieties, Progr. Math., vol. 199, Birkhäuser, Basel, 2001, pp. 71–115 (French, with English summary). MR 1875171
- Antoine Chambert-Loir and Yuri Tschinkel, On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math. 148 (2002), no. 2, 421–452. MR 1906155, DOI 10.1007/s002220100200
- C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44. MR 718125, DOI 10.1007/BFb0063234
- C. De Concini and T. A. Springer, Compactification of symmetric varieties, Transform. Groups 4 (1999), no. 2-3, 273–300. Dedicated to the memory of Claude Chevalley. MR 1712864, DOI 10.1007/BF01237359
- J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math. 109 (1987), no. 6, 991–1008. MR 919001, DOI 10.2307/2374583
- Jens Franke, Yuri I. Manin, and Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), no. 2, 421–435. MR 974910, DOI 10.1007/BF01393904
- Ramesh Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 101, Springer-Verlag, Berlin, 1988. MR 954385, DOI 10.1007/978-3-642-72956-0 GMO A. Gorodnik, F. Maucourant, and H. Oh, Manin’s conjecture on rational points of bounded height and adelic mixing, arXiv:math.NT/0601127.
- Benedict H. Gross, On the Satake isomorphism, Galois representations in arithmetic algebraic geometry (Durham, 1996) London Math. Soc. Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 223–237. MR 1696481, DOI 10.1017/CBO9780511662010.006
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016, DOI 10.1007/BF02684396
- Henry H. Kim and Freydoon Shahidi, Functorial products for $\textrm {GL}_2\times \textrm {GL}_3$ and the symmetric cube for $\textrm {GL}_2$, Ann. of Math. (2) 155 (2002), no. 3, 837–893. With an appendix by Colin J. Bushnell and Guy Henniart. MR 1923967, DOI 10.2307/3062134
- Martin Kneser, Starke Approximation in algebraischen Gruppen. I, J. Reine Angew. Math. 218 (1965), 190–203 (German). MR 184945, DOI 10.1515/crll.1965.218.190
- Erez M. Lapid, On the fine spectral expansion of Jacquet’s relative trace formula, J. Inst. Math. Jussieu 5 (2006), no. 2, 263–308. MR 2225043, DOI 10.1017/S1474748005000289
- C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995. Une paraphrase de l’Écriture [A paraphrase of Scripture]. MR 1361168, DOI 10.1017/CBO9780511470905
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Hee Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), no. 1, 133–192. MR 1905394, DOI 10.1215/S0012-7094-02-11314-3
- Emmanuel Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), no. 1, 101–218 (French). MR 1340296, DOI 10.1215/S0012-7094-95-07904-6
- Emmanuel Peyre (ed.), Nombre et répartition de points de hauteur bornée, Société Mathématique de France, Paris, 1998 (French). Papers from the seminars held in Paris, April/May 1996; Astérisque No. 251 (1998). MR 1679267
- Emmanuel Peyre, Torseurs universels et méthode du cercle, Rational points on algebraic varieties, Progr. Math., vol. 199, Birkhäuser, Basel, 2001, pp. 221–274 (French, with French summary). MR 1875176
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Jonathan D. Rogawski, Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, vol. 123, Princeton University Press, Princeton, NJ, 1990. MR 1081540, DOI 10.1515/9781400882441
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80 (French). MR 631309, DOI 10.1515/crll.1981.327.12
- Ichirô Satake, Theory of spherical functions on reductive algebraic groups over ${\mathfrak {p}}$-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5–69. MR 195863, DOI 10.1007/BF02684781
- Joseph Shalika, Ramin Takloo-Bighash, and Yuri Tschinkel, Rational points on compactifications of semi-simple groups of rank 1, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002) Progr. Math., vol. 226, Birkhäuser Boston, Boston, MA, 2004, pp. 205–233. MR 2029871, DOI 10.1007/978-0-8176-8170-8_{1}3
- Joseph A. Shalika and Yuri Tschinkel, Height zeta functions of equivariant compactifications of the Heisenberg group, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 743–771. MR 2058627
- Allan J. Silberger, Introduction to harmonic analysis on reductive $p$-adic groups, Mathematical Notes, vol. 23, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1979. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973. MR 544991
- Elisabetta Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987), no. 1, 165–171. MR 884653, DOI 10.1007/BF01457285
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 546588
Bibliographic Information
- Joseph Shalika
- Affiliation: Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218-2686
- Email: shalika@math.jhu.edu
- Ramin Takloo-Bighash
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
- MR Author ID: 671289
- Email: rtakloo@math.princeton.edu
- Yuri Tschinkel
- Affiliation: Courant Institute, NYU, 251 Mercer Street, New York, New York 10012
- Address at time of publication: Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen, Germany
- Email: tschinkel@cims.nyu.edu
- Received by editor(s): February 10, 2006
- Published electronically: May 11, 2007
- Additional Notes: The second author was partially supported by the Clay Mathematics Institute and the NSA
The third author was partially supported by NSF grants 0100277 and 0602333 - © Copyright 2007 American Mathematical Society
- Journal: J. Amer. Math. Soc. 20 (2007), 1135-1186
- MSC (2000): Primary 14G05, 11G50; Secondary 11F70
- DOI: https://doi.org/10.1090/S0894-0347-07-00572-3
- MathSciNet review: 2328719