Complexes pondérés sur les compactifications de Baily-Borel: Le cas des variétés de Siegel
HTML articles powered by AMS MathViewer
- by Sophie Morel;
- J. Amer. Math. Soc. 21 (2008), 23-61
- DOI: https://doi.org/10.1090/S0894-0347-06-00538-8
- Published electronically: June 9, 2006
- PDF | Request permission
Abstract:
In this work, we calculate the trace of a Hecke correspondance composed with a power of the Frobenius endomorphism on the fibre of the intersection complexes of the Baily-Borel compactification of a Siegel modular variety. Our main tool is Pink’s theorem about the restriction to the strata of the Baily-Borel compactification of the direct image of a local system on the Shimura variety. To use this theorem, we give a new construction of the intermediate extension of a pure perverse sheaf as a weight truncation of the full direct image. More generally, we are able to define analogs in positive characteristic of the weighted cohomology complexes introduced by Goresky, Harder and MacPherson.References
- A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications, Vol. IV, Math Sci Press, Brookline, MA, 1975. MR 457437
- W. L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442–528. MR 216035, DOI 10.2307/1970457
- A. A. Beĭlinson, On the derived category of perverse sheaves, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 27–41. MR 923133, DOI 10.1007/BFb0078365
- Analyse et topologie sur les espaces singuliers. I, Astérisque, vol. 100, Société Mathématique de France, Paris, 1982 (French). MR 751965
- J.-L. Brylinski and J.-P. Labesse, Cohomologie d’intersection et fonctions $L$ de certaines variétés de Shimura, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 3, 361–412 (French). MR 777375, DOI 10.24033/asens.1476
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353, DOI 10.1007/978-3-662-02632-8
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- Kazuhiro Fujiwara, Rigid geometry, Lefschetz-Verdier trace formula and Deligne’s conjecture, Invent. Math. 127 (1997), no. 3, 489–533. MR 1431137, DOI 10.1007/s002220050129
- M. Goresky, G. Harder, and R. MacPherson, Weighted cohomology, Invent. Math. 116 (1994), no. 1-3, 139–213. MR 1253192, DOI 10.1007/BF01231560
- Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373–444. MR 1124982, DOI 10.1090/S0894-0347-1992-1124982-1
- Robert E. Kottwitz and Michael Rapoport, Contribution of the points at the boundary, The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, pp. 111–150. MR 1155228
- R. P. Langlands, Modular forms and $\ell$-adic representations, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 361–500. MR 354617
- Marc Levine, Tate motives and the vanishing conjectures for algebraic $K$-theory, Algebraic $K$-theory and algebraic topology (Lake Louise, AB, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 167–188. MR 1367296, DOI 10.1007/978-94-017-0695-7_{7}
- Robert P. Langlands and Dinakar Ramakrishnan (eds.), The zeta functions of Picard modular surfaces, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1992. MR 1155223
- E. Looijenga and M. Rapoport, Weights in the local cohomology of a Baily-Borel compactification, Complex geometry and Lie theory (Sundance, UT, 1989) Proc. Sympos. Pure Math., vol. 53, Amer. Math. Soc., Providence, RI, 1991, pp. 223–260. MR 1141203, DOI 10.1090/pspum/053/1141203 [M]M S. Morel, Complexes d’intersection des compactifications de Baily-Borel : Le cas des groupes unitaires sur $\mathbb {Q}$, thèse de doctorat de l’université Paris-Sud, 2005.
- Richard Pink, Arithmetical compactification of mixed Shimura varieties, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 209, Universität Bonn, Mathematisches Institut, Bonn, 1990. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1989. MR 1128753
- Richard Pink, On $l$-adic sheaves on Shimura varieties and their higher direct images in the Baily-Borel compactification, Math. Ann. 292 (1992), no. 2, 197–240. MR 1149032, DOI 10.1007/BF01444618
- Richard Pink, On the calculation of local terms in the Lefschetz-Verdier trace formula and its application to a conjecture of Deligne, Ann. of Math. (2) 135 (1992), no. 3, 483–525. MR 1166642, DOI 10.2307/2946574
- Robert E. Kottwitz and Michael Rapoport, Contribution of the points at the boundary, The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, pp. 111–150. MR 1155228
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, DOI 10.2977/prims/1195171082 [V]V Y. Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara, preprint, arXiv:math.AG/0505564
Bibliographic Information
- Sophie Morel
- Affiliation: Laboratoire de mathématique, Université Paris-Sud, bâtiment 425, 91405 Orsay Cedex, France
- Address at time of publication: After September 1, 2006: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
- MR Author ID: 824326
- Email: sophie.morel@math.u-psud.fr
- Received by editor(s): November 11, 2005
- Published electronically: June 9, 2006
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 23-61
- MSC (2000): Primary 11F75; Secondary 11G18, 14F20
- DOI: https://doi.org/10.1090/S0894-0347-06-00538-8
- MathSciNet review: 2350050