Schubert polynomials for the affine Grassmannian
Author:
Thomas Lam
Journal:
J. Amer. Math. Soc. 21 (2008), 259-281
MSC (2000):
Primary 05E05; Secondary 14N15
DOI:
https://doi.org/10.1090/S0894-0347-06-00553-4
Published electronically:
October 18, 2006
MathSciNet review:
2350056
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Confirming a conjecture of Mark Shimozono, we identify polynomial representatives for the Schubert classes of the affine Grassmannian as the $k$-Schur functions in homology and affine Schur functions in cohomology. The results are obtained by connecting earlier combinatorial work of ours to certain subalgebras of Kostant and Kumar’s nilHecke ring and to work of Peterson on the homology of based loops on a compact group. As combinatorial corollaries, we settle a number of positivity conjectures concerning $k$-Schur functions, affine Stanley symmetric functions and cylindric Schur functions.
- Alberto Arabia, Cohomologie $T$-équivariante de la variété de drapeaux d’un groupe de Kac-Moody, Bull. Soc. Math. France 117 (1989), no. 2, 129–165 (French, with English summary). MR 1015806
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
- Roman Bezrukavnikov, Michael Finkelberg, and Ivan Mirković, Equivariant homology and $K$-theory of affine Grassmannians and Toda lattices, Compos. Math. 141 (2005), no. 3, 746–768. MR 2135527, DOI https://doi.org/10.1112/S0010437X04001228
- Raoul Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35–61. MR 102803
- Paul Edelman and Curtis Greene, Balanced tableaux, Adv. in Math. 63 (1987), no. 1, 42–99. MR 871081, DOI https://doi.org/10.1016/0001-8708%2887%2990063-6
- Sergey Fomin and Curtis Greene, Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), no. 1-3, 179–200. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661368, DOI https://doi.org/10.1016/S0012-365X%2898%2900140-X
- Sergey Fomin and Richard P. Stanley, Schubert polynomials and the nil-Coxeter algebra, Adv. Math. 103 (1994), no. 2, 196–207. MR 1265793, DOI https://doi.org/10.1006/aima.1994.1009
- D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280. MR 1826370, DOI https://doi.org/10.1007/s002220100122
- Howard Garland and M. S. Raghunathan, A Bruhat decomposition for the loop space of a compact group: a new approach to results of Bott, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 12, 4716–4717. MR 417333, DOI https://doi.org/10.1073/pnas.72.12.4716 Gin V. Ginzburg: Perverse sheaves on a loop group and Langlands’ duality, preprint; math.AG/9511007.
- William Graham, Positivity in equivariant Schubert calculus, Duke Math. J. 109 (2001), no. 3, 599–614. MR 1853356, DOI https://doi.org/10.1215/S0012-7094-01-10935-6
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919, DOI https://doi.org/10.1090/S0894-0347-01-00373-3
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
- Bertram Kostant and Shrawan Kumar, The nil Hecke ring and cohomology of $G/P$ for a Kac-Moody group $G$, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 6, 1543–1545. MR 831908, DOI https://doi.org/10.1073/pnas.83.6.1543
- Bertram Kostant and Shrawan Kumar, $T$-equivariant $K$-theory of generalized flag varieties, Proc. Nat. Acad. Sci. U.S.A. 84 (1987), no. 13, 4351–4354. MR 894705, DOI https://doi.org/10.1073/pnas.84.13.4351
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198 Lam T. Lam: Affine Stanley symmetric functions, Amer. J. Math., to appear; math.CO/0501335. LamAS T. Lam: Schubert polynomials for the affine Grassmannian (extended abstract), Proc. FPSAC, 2006, San Diego. LLMS T. Lam, L. Lapointe, J. Morse, and M. Shimozono: Affine insertion and Pieri rules for the affine Grassmannian, preprint, 2006; arXiv:math.CO/0609110. LamS T. Lam and M. Shimozono: A Little bijection for affine Stanley symmetric functions, preprint, 2006; math.CO/0601483.
- L. Lapointe, A. Lascoux, and J. Morse, Tableau atoms and a new Macdonald positivity conjecture, Duke Math. J. 116 (2003), no. 1, 103–146. MR 1950481, DOI https://doi.org/10.1215/S0012-7094-03-11614-2
- L. Lapointe and J. Morse, Schur function analogs for a filtration of the symmetric function space, J. Combin. Theory Ser. A 101 (2003), no. 2, 191–224. MR 1961543, DOI https://doi.org/10.1016/S0097-3165%2802%2900012-2 LM04 L. Lapointe and J. Morse: A $k$-tableaux characterization of $k$-Schur functions, preprint, 2005; arXiv:math.CO/0505519. LM05 L. Lapointe and J. Morse: Quantum cohomology and the $k$-Schur basis, Tran. Amer. Math. Soc., to appear; arXiv:math.CO/0501529.
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- Alain Lascoux and Marcel-Paul Schützenberger, Schubert polynomials and the Littlewood-Richardson rule, Lett. Math. Phys. 10 (1985), no. 2-3, 111–124. MR 815233, DOI https://doi.org/10.1007/BF00398147
- I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR 553598 Pet D. Peterson: Lecture notes at MIT, 1997.
- Alexander Postnikov, Affine approach to quantum Schubert calculus, Duke Math. J. 128 (2005), no. 3, 473–509. MR 2145741, DOI https://doi.org/10.1215/S0012-7094-04-12832-5
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 05E05, 14N15
Retrieve articles in all journals with MSC (2000): 05E05, 14N15
Additional Information
Thomas Lam
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
MR Author ID:
679285
ORCID:
0000-0003-2346-7685
Email:
tfylam@math.harvard.edu
Keywords:
Schubert polynomials,
symmetric functions,
Schubert calculus,
affine Grassmannian
Received by editor(s):
April 7, 2006
Published electronically:
October 18, 2006
Article copyright:
© Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.