FORMAL DEGREES AND ADJOINT γ-FACTORS

KAORU HIRAGA, ATSUSHI ICHINO, AND TAMOTSU IKEDA

Dedicated to Professor Hiroshi Saito on the occasion of his sixtieth birthday

INTRODUCTION

Let G be a connected reductive algebraic group over a local field F and let H be a closed subgroup of G over F. Set $G = G(F)$ and $H = H(F)$. Let π be an irreducible unitary representation of G and let V_π be the space of π. For $v \in V_\pi$, we will consider the integral

\[(0.1) \int_H (\pi(h)v, v) \, dh.\]

We can regard this integral as an analogue of (the square of the absolute value of) a period integral of an automorphic form and expect that it is related to L and ϵ-factors. For example, let $G = SO(n + 1) \times SO(n)$ and $H = SO(n)$. Let $\pi = \pi_1 \otimes \pi_0$, where π_1 (resp. π_0) is an irreducible unramified tempered representation of $SO(n + 1, F)$ (resp. $SO(n, F)$). Then (0.1) can be expressed in terms of

\[
\frac{L(\frac{1}{2}, \pi_1 \times \pi_0)}{L(1, \pi_1, \text{Ad})L(1, \pi_0, \text{Ad})}
\]

if v is unramified (cf. [20]). Now let $G = H \times H$, where H is a connected reductive algebraic group over F. For simplicity, we assume that the connected center of H is anisotropic. Let $\pi = \pi_H \otimes \tilde{\pi}_H$, where π_H is a discrete series representation of H and $\tilde{\pi}_H$ is the contragredient representation of π_H. Then (0.1) can be expressed in terms of the formal degree $d(\pi_H)$ of π_H. In this paper, we give a conjectural formula for $d(\pi_H)$ in terms of the adjoint γ-factor

\[
\gamma(s, \pi_H, \text{Ad}, \psi) = \epsilon(s, \pi_H, \text{Ad}, \psi) \cdot \frac{L(1 - s, \tilde{\pi}_H, \text{Ad})}{L(s, \pi_H, \text{Ad})}
\]

(cf. Conjecture [1,4].) Here Ad is the adjoint representation of the L-group $^L H$ of H on the Lie algebra $\text{Lie}(H)$ of the dual group of H and ψ is a non-trivial additive character of F.

Our conjecture is supported by various examples. For example, we assume that $F = \mathbb{R}$ and H is anisotropic. We take the Haar measure dh on H determined by a Chevalley basis of $\text{Lie}(H) \otimes \mathbb{C}$. Let π_H be an irreducible finite dimensional representation of H. Then the conjecture for π_H asserts that

\[
\frac{\dim \pi_H}{\text{vol}(H)} = \frac{1}{2^n} \cdot |\gamma(0, \pi_H, \text{Ad}, \psi)|
\]
and it is compatible with the Weyl dimension formula. Here \(l \) is the rank of \(H \) and \(\psi(x) = \exp(2\pi \sqrt{-1}x) \) for \(x \in \mathbb{R} \). Also, if \(F \) is non-archimedean, then the conjecture for \(\text{GL}(n) \) is compatible with the result of Silberger and Zink \[35, 37\].

Moreover, we provide some evidence in the case of the quasi-split unitary group in three variables. To be precise, let \(F \) be a non-archimedean local field of characteristic zero. Let \(E \) be a quadratic extension of \(F \) and let \(\sigma \) be the non-trivial automorphism of \(E \) over \(F \). Put

\[
J_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.
\]

Let

\[
H = U(3) = \{ h \in \text{Res}_{E/F} \text{GL}(3) \mid \theta(h) = h \},
\]

where \(\theta(h) = \text{Ad}(J_3)(\sigma(h^{-1})) \). Following Gross \[11\], we choose a Haar measure \(dh \) on \(H \). Let \(\pi_H \) be a stable discrete series representation of \(H \). We will verify the conjecture for \(\pi_H \), i.e.,

\[
d(\pi_H) = \frac{1}{2} |\gamma(0, \pi_H, \text{Ad}, \psi)|
\]

(cf. Theorem 8.1).

To prove (0.2), we use twisted endoscopy. Let \(J(\pi_H) = \text{trace} \pi_H \) be the character of \(\pi_H \) and let \(c_0(\pi_H) \) be the coefficient associated to the trivial orbit in the local character expansion of \(J(\pi_H) \) (cf. [15]). Recall that

\[
c_0(\pi_H) \doteq d(\pi_H).
\]

Here the notation \(\doteq \) indicates equality up to constants which do not depend on the representations. Let \(\pi \) be the base change of \(\pi_H \) to \(\text{GL}(3, E) \). Then \(\pi \) is square integrable since \(\pi_H \) is stable. Also, \(\pi \) is isomorphic to \(\pi \circ \theta \). We fix an isomorphism \(\pi(\theta) : \pi \to \pi \circ \theta \) such that \(\pi(\theta)^2 = \text{id} \). Let \(J^\theta(\pi) = \text{trace} \pi \circ \pi(\theta) \) be the twisted character of \(\pi \) and let \(c_{0, \theta}(\pi) \) be the coefficient associated to the trivial orbit in the local character expansion of \(J^\theta(\pi) \) (cf. [5]). The character identity between \(J^\theta(\pi) \) and \(J(\pi_H) \) was proved by Rogawski \[31\] and implies that

\[
|c_{0, \theta}(\pi)| \doteq |c_0(\pi_H)|.
\]

We also have an analogue

\[
c_{0, \theta}(\pi) \cdot (v, \pi(\theta)v') \doteq d(\pi) \cdot J^\theta(1, f)
\]

of (0.3). Here \(f \) is a matrix coefficient of \(\pi \) given by \(f(g) = (\pi(g)v, v') \) and \(J^\theta(1, f) \) is the twisted orbital integral of \(f \) at the identity element. By the result of Silberger and Zink \[35, 37\], we have

\[
d(\pi) = |\lim_{s \to 0} s^{-1} \gamma(s, \pi \times \tilde{\pi}, \psi)|.
\]

By the results of Shahidi \[32\] and Goldberg \[10\], we have

\[
|J^\theta(1, f)| \doteq |\lim_{s \to 0} s^{-1} \gamma(s, \pi, r, \psi)|^{-1} \cdot |(v, \pi(\theta)v')|,
\]

where \(r \) is the Asai representation. Thus we obtain (0.2).

This paper is organized as follows. In [11] we formulate a conjecture on formal degrees and relate it to the Plancherel formula. In [32] we verify the conjecture in the archimedean case. In [33] we present various examples in the non-archimedean case. For example, the conjecture for \(\text{GL}(n) \) is compatible with the result of Silberger.
and Zink [35, 37]. Using the results of Shahidi [32, 33, 34], we give a new proof of their result in [4]. In [5] we give a description of the coefficient associated to the trivial orbit in the local character expansion of a certain twisted character. After recalling some facts about twisted orbital integrals in [6] we prove this description in [7]. In [8] we verify the conjecture for a stable discrete series representation of $U(3)$.

1. Conjectures

In this section, we formulate a conjecture on formal degrees (cf. Conjecture 1.4).

Let F be a local field of characteristic zero and let ψ be a non-trivial additive character of F. Let $| \cdot |_F$ denote the absolute value on F. If F is non-archimedean, let \mathfrak{o}_F be the maximal compact subring of F, \mathfrak{p}_F the maximal ideal of \mathfrak{o}_F, and $q = q_F$ the cardinality of $\mathfrak{o}_F/\mathfrak{p}_F$. Let $\Gamma = \text{Gal}(\bar{F}/F)$ denote the absolute Galois group of F, W_F the Weil group of F, W'_F the Weil-Deligne group of F, and L_F the Langlands group of F given by

$$L_F = \begin{cases} W_F & \text{if } F \text{ is archimedean}, \\ W_F \times \text{SL}(2, \mathbb{C}) & \text{if } F \text{ is non-archimedean}. \end{cases}$$

Let G be a connected reductive algebraic group over F. Set $G = G(F)$. Let G^* be the quasi-split inner form of G and choose an inner twist $\eta : G \to G^*$. Let \hat{G} denote the dual group of G and $L^*G = G \times W_F$ the L-group of G. We fix an F-splitting $(B^*, T^*, \{X_\alpha\})$ of G^* and a Γ-splitting $(B, T, \{X_\alpha\})$ of G.

Let π be a discrete series representation of G and let V_{π} be the space of π. Let $d(\pi) \in \mathbb{R}_{>0}$ denote the formal degree of π. By definition, we have

$$\int_{G/A} (\pi(g)u, u')|(\pi(g)v, v')| dg = d(\pi)^{-1}(u, v)(u', v')$$

for $u, u', v, v' \in V_{\pi}$, where A is the split component of the center of G and $A = A(F)$. We remark that $d(\pi) = d(\pi, dg)$ depends on the choice of dg. Following Gross [11], we take a Haar measure $\mu_{G/A, \psi}$ on G/A defined as follows. (This should not be confused with the Euler-Poincaré measure μ_G on G in the notation of [11].) We may assume that $A = \{1\}$. Moreover, we may assume that G has an anisotropic inner form if F is archimedean. Let ω_G be a differential form of top degree on G over F as in Sections 4 and 7 of [11]. Let $\mu_{G, \psi}$ denote the Haar measure on G determined by ω_G and the self-dual measure on F with respect to ψ. Then

$$\mu_{G, \psi}(a) = |\mathfrak{o}_F|^{\dim G/2} \cdot \mu_{G, \psi},$$

where $a \in F^\times$ and $\psi_a(x) = \psi(ax)$ for $x \in F$. If F is non-archimedean, ψ is of order zero, and G is unramified, then

$$\mu_{G, \psi}(G(\mathfrak{o}_F)) = q^{-\dim G}|G(\mathbb{F}_q)|.$$

Here we extend G to a smooth group scheme over \mathfrak{o}_F associated to a hyperspecial maximal compact subgroup of G.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 1.1. Let π be a discrete series representation of G. Let $a \in F^\times$. We define a non-trivial additive character ψ_a of F by $\psi_a(x) = \psi(ax)$ for $x \in F$. Then

$$d(\pi, \mu_{G/A, \psi_a}) = |a|_F^{-n/2} \cdot d(\pi, \mu_{G/A, \psi}),$$

where $n = \dim G/A$.

Proof. The lemma follows from (1.1).

Let $\phi : L_F \to LG$ be a Langlands parameter. We say that ϕ is tempered if $\phi(W_F)$ is bounded and that ϕ is elliptic if $\phi(L_F)$ is not contained in any proper parabolic subgroup of $L G$. For each finite dimensional representation r of $L G$, put

$$\gamma(s, r \circ \phi, \psi) = \epsilon(s, r \circ \phi, \psi) \cdot \frac{L(1 - s, \check{r} \circ \phi)}{L(s, r \circ \phi)},$$

where \check{r} is the contragredient representation of r. Let Ad denote the adjoint representation of $L G$ on $\text{Lie}(\hat{G})/\text{Lie}(Z(\hat{G})^F)$. Note that Ad is self-dual.

Lemma 1.2. Let $\phi : L_F \to L G$ be an elliptic Langlands parameter. Then at $s = 0$,

$$\gamma(s, \text{Ad} \circ \phi, \psi) = \epsilon(s, \text{Ad} \circ \phi, \psi) \text{ holomorphic and non-zero.}$$

Proof. Since ϕ is elliptic, $\text{Ad} \circ \phi$ does not contain the trivial representation of L_F (cf. Lemma 10.3.1 of [22]). Hence the lemma follows from the multiplicativity of γ-factors.

Lemma 1.3. Let $\phi : L_F \to L G$ be an elliptic Langlands parameter. Let $a \in F^\times$. We define a non-trivial additive character ψ_a of F by $\psi_a(x) = \psi(ax)$ for $x \in F$. Then

$$|\gamma(0, \text{Ad} \circ \phi, \psi_a)| = |a|_F^{-n/2} \cdot |\gamma(0, \text{Ad} \circ \phi, \psi)|,$$

where $n = \dim G/A$.

Proof. Note that $n = \dim \text{Lie}(\hat{G})/\text{Lie}(Z(\hat{G})^F)$. By definition, we have

$$|\epsilon(s, \text{Ad} \circ \phi, \psi_a)| = |a|_F^{n(s-1/2)} \cdot |\epsilon(s, \text{Ad} \circ \phi, \psi)|.$$}

This yields the lemma.

Let $\Pi(G)$ denote the set of equivalence classes of irreducible admissible representations of G. The local Langlands conjecture asserts that there exists a partition

$$\prod_{\phi} \Pi_{\phi}(G)$$

of $\Pi(G)$ into finite subsets, where ϕ runs over equivalence classes of Langlands parameters $\phi : L_F \to L G$. Let $\pi \in \Pi_{\phi}(G)$. If ϕ is tempered (resp. elliptic), then π is expected to be tempered (resp. essentially square integrable). For each finite dimensional representation r of $L G$, put

$$L(s, \pi, r) = L(s, r \circ \phi),$$

$$\epsilon(s, \pi, r, \psi) = \epsilon(s, r \circ \phi, \psi),$$

and

$$\gamma(s, \pi, r, \psi) = \epsilon(s, \pi, r, \psi) \cdot \frac{L(1 - s, \check{\pi}, r)}{L(s, \pi, r)},$$

where $\check{\pi}$ is the contragredient representation of π.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let \(\phi : L_F \to L^G \) be a tempered Langlands parameter. Following [19, §1], set

\[
S_\phi = \{ s \in \hat{G}_{sc} | \text{Int} \circ \phi = \phi \mod B^1(W_F, Z(\hat{G})) \}, \quad S_\phi = \pi_0(S_\phi), \\
S_\phi^2 = \{ s \in \hat{G}^2 | \text{Int} \circ \phi = \phi \}, \quad S_\phi^2 = \pi_0(S_\phi^2),
\]

where \(\hat{G}_{sc} \) is the simply connected cover of the derived group of \(\hat{G} \) and \(\hat{G}^2 \) is the dual group of \(G/A \). Let \(Z_\phi \) be the image of \(Z(\hat{G}_{sc}) \) in \(S_\phi \). Let \(\chi_G \) be the character of \(Z(\hat{G}_{sc})^F \) associated to \(G \) by the map

\[
H^1(F, G^{ad}_*) \longrightarrow \pi_0(Z(\hat{G}_{sc})^F)^D
\]
defined by Kottwitz [22, 23]. Here \(G^{ad}_* \) is the adjoint group of \(G^* \). By Lemma 9.1 of [19], we can regard \(\chi_G \) as a character of the image of \(Z(\hat{G}_{sc})^F \) in \(S_\phi \). We extend \(\chi_G \) to a character of \(Z_\phi \). Let \(\Pi(S_\phi, \chi_G) \) denote the set of equivalence classes of irreducible representations of \(S_\phi \) such that \(Z_\phi \) acts via \(\chi_G \). It is believed that there exists a map

\[
\Pi_\phi(G) \longrightarrow \Pi(S_\phi, \chi_G)
\]
which satisfies certain conditions on characters (cf. [2]). For example,

\[
\sum_{\pi \in \Pi_\phi(G)} \langle 1, \pi \rangle \text{trace} \pi
\]
is required to be the unique (up to a scalar) stable distribution in the space of virtual characters generated by \(\Pi_\phi(G) \), where

\[
\langle 1, \pi \rangle = \dim \rho_\pi
\]
if \(\rho_\pi \in \Pi(S_\phi, \chi_G) \) is associated to \(\pi \in \Pi_\phi(G) \). Moreover, the quantity \(\langle 1, \pi \rangle \) is expected to be canonically determined by \(\pi \).

Conjecture 1.4. Let \(\phi : L_F \to L^G \) be an elliptic tempered Langlands parameter. Then

\[
d(\pi) = \frac{\langle 1, \pi \rangle}{|S_\phi^2|} \cdot |\gamma(0, \pi, \text{Ad}, \psi)|
\]

for \(\pi \in \Pi_\phi(G) \).

We will relate Conjecture 1.4 to the Plancherel formula. We fix a non-trivial additive character \(\psi \) of \(F \). Let \(\Theta \) be the set of pairs \((\mathfrak{D}, P = MN) \), where \(P \) is a semi-standard parabolic subgroup of \(G \), \(M \) is the Levi subgroup of \(P \), \(N \) is the unipotent radical of \(P \), and \(\mathfrak{D} \) is an orbit in the set of equivalence classes of discrete series representations of \(M \) under the action of the group of unramified unitary characters of \(M \). For \((\mathfrak{D}, P = MN) \in \Theta \) and \(\pi \in \mathfrak{D} \), put

\[
d\nu(\pi) = \frac{\langle 1, \pi \rangle}{|S_{\phi_M}^2|} \cdot |\gamma(0, \pi, r_M, \psi)| \cdot d\pi.
\]

Here \(\phi_M : L_F \to L^M \) is the (conjectural) Langlands parameter associated to \(\pi \), \(r_M \) is the adjoint representation of \(L^M \) on \(\text{Lie}(\hat{G})/\text{Lie}(Z(\hat{M}))^F \), and \(d\pi \) is the Lebesgue measure on \(\mathfrak{D} \) (cf. [36, pp. 239 and 302]). Then the Plancherel formula (cf. Theorem 27.3 of [14] and Théorème VIII.1.1 of [36]), Langlands' conjecture on Plancherel measures (cf. Appendix II of [26]), and Conjecture 1.4 suggest that the following conjecture holds.
Conjecture 1.5. There exist explicit constants $c_M \in \mathbb{R}_{>0}$ which do not depend on \mathcal{D} such that

$$f(1) = \sum_{(\mathcal{D}, P=MN) \in \Theta} c_M \int_{\mathcal{D}} \text{trace} \text{Ind}_{\pi}^{G}(f) \, d\nu(\pi)$$

for $f \in C_c^{\infty}(G)$.

2. Examples: The archimedean case

In this section, we verify Conjecture 1.4 in the archimedean case.

Let $F = \mathbb{R}$. By Lemmas 1.1 and 1.3 we may assume that $\psi(x) = \exp(2\pi \sqrt{-1}x)$ for $x \in \mathbb{R}$. Let G be a connected reductive algebraic group of rank l over \mathbb{R}. For simplicity, we assume that the connected center of G is anisotropic. We may assume that G has an anisotropic inner form G_{an}.

Lemma 2.2. Let π be a discrete series representation of G. Then

$$d(\pi) = \frac{1}{2^l} |\gamma(0, \pi, \text{Ad}, \psi)|.$$

In particular, Conjecture 1.4 holds for π.

The rest of this section is devoted to the proof of Proposition 2.1. Let $\hat{\Sigma}$ denote the set of roots of T in \hat{G} and $\hat{\Sigma}^+$ the subset of positive roots determined by B. Let N be the number of positive roots. Let $\langle \cdot, \cdot \rangle$ denote the pairing between $X_+(T) \otimes \mathbb{Q}$ and $X^+(T) \otimes \mathbb{Q}$.

Lemma 2.2. Let π_λ be a discrete series representation of G with Harish-Chandra parameter λ. Then

$$|\gamma(0, \pi_\lambda, \text{Ad}, \psi)| = \pi^{-l} \cdot (2\pi)^{-N} \prod_{\alpha \in \hat{\Sigma}^+} |\langle \lambda, \hat{\alpha} \rangle|.$$

Proof. Let $\phi : W_\mathbb{R} \to L^G$ be the Langlands parameter associated to π_λ. Then $\phi(z) = z^\lambda \overline{z}^{-\lambda}$ for $z \in W_\mathbb{C}$. The action $\text{Ad} \circ \phi$ of $W_\mathbb{R}$ on $\text{Lie}(T)$ (resp. $\mathbb{C}X_\alpha \oplus \mathbb{C}X_{-\alpha}$) is given by the sign character (resp. $\text{Ind}_{W_\mathbb{C}}^{G}(\phi_\alpha)$). Here $\hat{\alpha} \in \hat{\Sigma}^+$ and $\phi_\alpha(z) = z^{\langle \lambda, \hat{\alpha} \rangle} \overline{z}^{-\langle \lambda, \hat{\alpha} \rangle}$ for $z \in W_\mathbb{C}$. Hence we have

$$L(s, \pi_\lambda, \text{Ad}) = \Gamma_{\mathbb{R}}(s+1) \prod_{\alpha \in \hat{\Sigma}^+} \Gamma_{\mathbb{C}}(s + |\langle \lambda, \hat{\alpha} \rangle|),$$

where $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma(s/2)$ and $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s} \Gamma(s)$. By definition, $\epsilon(s, \pi_\lambda, \text{Ad}, \psi)$ is a power of $\sqrt{-1}$. This yields the lemma.

Set $g = \text{Lie}(G)$. Let θ be a Cartan involution of g and let B be a symmetric bilinear form on g over \mathbb{R} which satisfies the conditions of Lemma 3.2 of [13]. Then the quadratic form

$$\|X\|^2 = -B(X, \theta(X))$$

for $X \in g$ is positive definite. This norm $\| \cdot \|$ on g defines a Lebesgue measure on g and hence a Haar measure dG on G via the exponential map. Let T be an anisotropic maximal torus of G such that $\text{Lie}(T)$ is θ-invariant. Similarly, we can define a Haar measure dT on T.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Set $g_C = \text{Lie}(G) \otimes \mathbb{C}$ and $t_C = \text{Lie}(T) \otimes \mathbb{C}$. Let Σ denote the set of roots of t_C in g_C and Σ^+ the subset of positive roots. We extend B to a symmetric bilinear form on g_C over \mathbb{C}. For $\alpha \in \Sigma$, we define $H_\alpha \in t_C$ by

$$B(H, H_\alpha) = \alpha(H)$$

for $H \in t_C$. Put

$$\varpi = \prod_{\alpha \in \Sigma^+} H_\alpha.$$

Lemma 2.3. Let π_λ be a discrete series representation of G with Harish-Chandra parameter λ. Then

$$d(\pi_\lambda, dG) = (2\pi)^{-N} \cdot |\varpi(\lambda)| \cdot \text{vol}(T, dT)^{-1}.$$

Proof. Let K be a maximal compact subgroup of G such that $\text{Lie}(K)$ is θ-invariant and let dK be the Haar measure on K determined by $\| \cdot \|$. Let dx be the standard measure on G as in [13, §7]. By Lemma 37.2 of [13], we have

$$dx = 2^{\nu/2} \cdot \text{vol}(K, dK)^{-1} \cdot dG,$$

where $\nu = \dim G/K - \text{rank } G/K$. By Corollary of Lemma 23.1 of [14], we have

$$d(\pi_\lambda, dx) = c_G^{-1} \cdot |W| \cdot |\varpi(\lambda)|.$$

Here W is the Weyl group of T in G and

$$c_G = 2^{\nu/2} \cdot (2\pi)^N \cdot |W| \cdot \frac{\text{vol}(T, dT)}{\text{vol}(K, dK)}$$

(cf. Lemma 37.3 of [13]). This completes the proof. \hfill \Box

Lemma 2.4. Let π be a discrete series representation of G and let $\phi : W_R \to \mathbb{C}$ be the Langlands parameter associated to π. Let π_{an} be the irreducible finite dimensional representation of G_{an} associated to ϕ by the local Langlands correspondence. Then

$$d(\pi) = d(\pi_{\text{an}}).$$

Proof. We extend θ to an anti-linear involution of g_C over \mathbb{C}. Set $g_{\text{an}} = \text{Lie}(G_{\text{an}})$. We may identify g_{an} with g^θ_C. Then the restrictions of θ and B to g_{an} define a norm $\| \cdot \|_{\text{an}}$ on g_{an}. Let dG_{an} be the Haar measure on G_{an} determined by $\| \cdot \|_{\text{an}}$. Then dG and dG_{an} are compatible. By Lemma 2.3, we have

$$d(\pi, dG) = d(\pi_{\text{an}}, dG_{\text{an}}).$$

By definition, μ_G, ψ and $\mu_{G_{\text{an}}, \psi}$ are also compatible. This yields the lemma. \hfill \Box

By Lemma 2.4 to prove Proposition 2.1, we may assume that G is anisotropic. Let π be an irreducible finite dimensional representation of G. By Lemmas 2.2 and 2.3 there exists a constant $c \in \mathbb{R}_{>0}$ which does not depend on π such that

$$d(\pi) = c |\gamma(0, \pi, \text{Ad}, \psi)|.$$

By [27, 11, §7], we have

$$\text{vol}(G) = 2^N \prod_{i=1}^l \frac{2\pi^{m_i+1}}{m_i!} = (2\pi)^{l+N} \prod_{\alpha \in \Sigma^+} \langle \rho, \alpha \rangle^{-1}.$$
Here \(m_1, \ldots, m_l \) are the exponents of \(G \) and \(\rho \) is half the sum of positive roots. Note that
\[
\sum_{i=1}^{l} m_i = N,
\]
\[
\prod_{i=1}^{l} m_i! = \prod_{\alpha \in \Sigma^+} \langle \rho, \alpha \rangle.
\]
By Lemma 2.2, we have \(\text{vol}(G) = 2^{l} |\gamma(0, \pi, \text{Ad}, \psi)|^{-1} \), where \(\pi \) is the trivial representation of \(G \). Hence we have \(c = 2^{-l} \). This completes the proof of Proposition 2.1.

3. Examples: The non-archimedean case

Let \(F \) be a non-archimedean local field of characteristic zero. By Lemmas 1.1 and 1.3, we may assume that \(\psi \) is of order zero.

3.1. Inner forms of \(\text{GL}(n) \). We first recall the following result of Silberger and Zink [35], [37].

Theorem 3.1. Let \(\pi \) be a discrete series representation of \(\text{GL}(n, F) \). Then
\[
d(\pi) = \frac{1}{n} |\gamma(0, \pi, \text{Ad}, \psi)|.
\]
In particular, Conjecture 1.4 holds for \(\pi \).

To be precise, let \(\pi \) be the unique irreducible subrepresentation of an induced representation
\[
\sigma| \det(F^{(e-1)/2} \times \sigma) | \det(F^{(e-3)/2} \times \cdots \times \sigma) | \det(F^{-(e-1)/2}),
\]
where \(\sigma \) is an irreducible unitary supercuspidal representation of \(\text{GL}(m, F) \) with \(n = em \). Using the theory of types, Silberger and Zink showed that \(d(\pi) \) is equal to
\[
r \cdot q^{em} - 1 \cdot q^{er} - 1 \cdot q^{e(r-m)/2 + e^2(f+r-m^2)/2} \cdot \frac{1}{n} \prod_{i=1}^{n-1} (q^i - 1) \cdot \text{vol}(\text{GL}(n, \mathcal{O}_F)/\mathcal{O}_F^\times)^{-1}
\]
(cf. Theorems 6.5 and 6.9 of [3]). Here \(r \) is the torsion number of \(\sigma \times \sigma \). It is easy to check that this quantity coincides with \(n^{-1} |\gamma(0, \pi, \text{Ad}, \psi)| \). In [4] we will give a new proof of Theorem 3.1 which does not rely on the theory of types.

Let \(G \) be an inner form of \(\text{GL}(n) \) over \(F \). Then \(G = \text{GL}(n', D) \) with \(n = dn' \), where \(D \) is a division algebra of dimension \(d^2 \) over \(F \). Let \(\pi \) be a discrete series representation of \(G \). By Theorem 7.2 of [3], we have
\[
d(\pi) = \prod_{\substack{1 \leq i \leq n \\ i \neq 0 \mod d}} (q^i - 1)^{-1} \cdot d(\pi^*) \cdot \frac{\text{vol}(\text{GL}(n, \mathcal{O}_F)/\mathcal{O}_F^\times)}{\text{vol}(\text{GL}(n', \mathcal{O}_D)/\mathcal{O}_D^\times)},
\]
where \(\pi^* \) is the discrete series representation of \(\text{GL}(n, F) \) associated to \(\pi \) by the Deligne-Kazhdan-Vignéras correspondence [9]. Since
\[
\text{vol}(\text{GL}(n', \mathcal{O}_D)) = q^{-(d-1)dn'^2/2} \prod_{i=1}^{n'} (1 - q^{-di}),
\]
we obtain
\[d(\pi) = d(\pi^*). \]

3.2. Inner forms of SL(n). Let \(\tilde{G} \) be an inner form of GL(n) over \(F \) and let \(G \) be the derived group of \(\tilde{G} \). Then \(G \) is an inner form of SL(n) over \(F \). Let \(G_{\text{ad}} \) be the adjoint group of \(G \). Set \(C = \text{cok}(G \to G_{\text{ad}}) \).

Let \(\phi : L_F \to L_G \) be an elliptic Langlands parameter. Then there exists an elliptic tempered Langlands parameter \(\tilde{\phi} : L_F \to \tilde{L}_G \) such that \(\phi = \text{pr} \circ \tilde{\phi} \), where \(\text{pr} : L_G \to L_G \) is the projection. Let \(\tilde{\pi} \) be the discrete series representation of \(\tilde{G} \) associated to \(\tilde{\phi} \) by the local Langlands correspondence \([10], [17]\) and let \(V_{\tilde{\pi}} \) be the space of \(\tilde{\pi} \). Let \(\Pi_{\phi}(G) \) denote the set of equivalence classes of irreducible constituents of the restriction of \(\tilde{\pi} \) to \(G \). Note that \(\Pi_{\phi}(G) \) does not depend on the choice of \(\tilde{\phi} \). Put
\[X(\tilde{\pi}) = \{ \omega \in C^D \mid \tilde{\pi} \otimes \omega \simeq \hat{\pi} \}, \]
where \(C^D \) is the Pontrjagin dual of \(C \) and \(\omega \) is regarded as a character of \(G_{\text{ad}} \). For \(s \in S_{\phi} \), we have
\[\text{Int} s \circ \tilde{\phi} = a_s \cdot \tilde{\phi}, \]
where \(a_s \) is a 1-cocycle of \(W_F \) in \(Z(\tilde{G}_{\text{sc}}) \). Let \(\omega_s \) be the character of \(C \) determined by \(a_s \). Then the map \(s \mapsto \omega_s \) induces an exact sequence
\[1 \longrightarrow Z_{\phi} \longrightarrow S_{\phi} \longrightarrow X(\tilde{\pi}) \longrightarrow 1. \]
By Theorem 1.4 of \([19]\), there exists an action of \(S_{\phi} \) on \(V_{\tilde{\pi}} \) such that \(Z_{\phi} \) acts via \(\chi_G \) and such that
\[\tilde{\pi} \circ s = s \circ (\tilde{\pi} \otimes \omega_s) \]
for \(s \in S_{\phi} \). Moreover, if we write a decomposition of \(V_{\tilde{\pi}} \) as a representation of \(S_{\phi} \times G \) in the form
\[\bigoplus_{\rho \in \Pi(S_{\phi}, \chi_G)} \rho \otimes \pi_{\rho}, \]
then the map \(\rho \mapsto \pi_{\rho} \) defines a bijection between \(\Pi(S_{\phi}, \chi_G) \) and \(\Pi_{\phi}(G) \) (cf. Theorem 1.1 of \([19]\)).

Lemma 3.2. For \(\rho \in \Pi(S_{\phi}, \chi_G) \), we have
\[d(\pi_{\rho}) = n^2 \cdot \dim \rho \cdot d(\tilde{\pi}). \]

Proof. We fix an invariant hermitian inner product \((\cdot, \cdot) \) on \(V_{\tilde{\pi}} \). Then \((\cdot, \cdot) \) is \(S_{\phi} \)-invariant. Let \(v \) be an element in the \(\pi_{\rho} \)-isotypic subspace of \(V_{\tilde{\pi}} \). Recall that the sequence
\[1 \longrightarrow G/\mu_n(F) \longrightarrow G_{\text{ad}} \longrightarrow C \longrightarrow 1 \]
is exact. Here \(\mu_n \) is the group of \(n \)-th roots of unity. Since the pullback of \(\omega_{G_{\text{ad}}} \) to \(G \) is \(n \omega_G \) and \(|C|^{-1} \sum_{\omega \in C^D} \omega \) is the characteristic function of \(G/\mu_n(F) \), we have
\[d(\pi_{\rho})^{-1}(v, v)(v, v) = \frac{|\mu_n(F)|}{|n|} \cdot \frac{1}{|C|} \sum_{\omega \in C^D} \int_{G_{\text{ad}}} ((\tilde{\pi} \otimes \omega)(g)v, v)(\tilde{\pi}(g)v, v) \, dg. \]
By the Schur orthogonality relations, we have
\[\int_{G_{\text{ad}}} ((\tilde{\pi} \otimes \omega)(g)v, v)(\overline{\tilde{\pi}(g)v, v}) \, dg = 0 \]
unless \(\omega \in X(\hat{\pi}) \). Moreover, we have
\[
\int_{G_{ad}} ((\tilde{\pi} \otimes \omega_n)(g)v, v)(\tilde{\pi}(g)v, v) dg = \int_{G_{ad}} (\tilde{\pi}(g)sv, sv)(\tilde{\pi}(g)v, v) dg = d(\tilde{\pi})^{-1}(sv, v)(sv, v)
\]
for \(s \in S_\phi \). Thus we obtain
\[
d(\pi_\rho)^{-1}(v, v)(\bar{v}, \bar{v}) = \frac{|\mu_n(F)|}{|n|_F \cdot |C| \cdot n} \sum_{s \in S_\phi} d(\tilde{\pi})^{-1}(sv, v)(sv, v)
\]
\[= \frac{|\mu_n(F)|}{|n|_F \cdot |C| \cdot n} \cdot |S_\phi| \cdot d(\tilde{\pi})^{-1}(v, v)(\bar{v}, \bar{v}).
\]
Note that
\[|n|_F = \frac{|H^0(F, \mu_n)| \cdot |H^2(F, \mu_n)|}{|H^1(F, \mu_n)|} = \frac{|\mu_n(F)| \cdot n}{|C|}.
\]
This yields the lemma. \(\square \)

By Theorem \([5.1]\) and Lemma \([5.2]\) we have
\[d(\pi_\rho) = n \cdot \dim \rho \cdot |S_\phi| \cdot |\gamma(0, \pi_\rho, \Ad, \psi)|
\]
for \(\rho \in \Pi(S_\phi, \chi G) \).

3.3. Steinberg representations

Let \(G \) be a connected reductive algebraic group over \(F \). For simplicity, we assume that the connected center of \(G \) is anisotropic. Let \(\pi_0 \) be the Steinberg representation of \(G \). Note that the formal degree of \(\pi_0 \) was computed by Borel \([4]\). Using the results of Kottwitz \([24]\) and Gross \([11], [12]\), we will verify Conjecture \([1.4]\) for \(\pi_0 \). In particular, if \(G \) is an anisotropic torus, then Conjecture \([1.4]\) holds.

Let \(\mu_{G,EP} \) denote the Euler-Poincaré measure on \(G \) and let \(f_{EP} \in C_c^\infty(G) \) denote the Euler-Poincaré function with respect to \(\mu_{G,EP} \). By Theorems 2 and 2′ of \([24]\) and the Plancherel formula (cf. Théorème VIII.1.1 of \([39]\)), we have \(f_{EP}(1) = 1 \) and
\[|d(\pi_0, \mu_{G,EP})| = 1.
\]
By Theorem 5.5 of \([11]\), we have
\[e(G) \cdot |H^1(F, G)| \cdot L(M) \cdot \mu_{G,EP} = L(M^\vee(1)) \cdot \mu_G, \psi.
\]
Here \(e(G) = \pm 1 \) is the Kottwitz sign, \(M \) is the motive of \(G \) as in \([11]\), and \(M^\vee(1) = M^\vee \otimes \mathbb{Q}(1) \) is the Tate twist of the dual motive of \(M \). Hence we have
\[d(\pi_0) = |H^1(F, G)|^{-1} \cdot \frac{|L(M^\vee(1))|}{|L(M)|}.
\]

Let \(\phi_0 : L_F \rightarrow \mathbb{L} G \) be the Langlands parameter associated to \(\pi_0 \). Then \(\phi_0 \) is trivial on \(W_F \) and the restriction of \(\phi_0 \) to \(\SL(2, \mathbb{C}) \) corresponds to the regular unipotent orbit in \(\tilde{G} \). Hence the centralizer of \(\phi_0(L_F) \) in \(\tilde{G} \) is \(Z(\tilde{G})^F \) and \(|S_{\phi_0}| = |H^1(F, G)| \).

Lemma 3.3.
\[|\gamma(0, \pi_0, \Ad, \psi)| = \frac{|L(M^\vee(1))|}{|L(M)|}.
\]
Proof. By Corollary 6.5 of [12], we have $L(M^V(1)) = L(1, \pi_0, \text{Ad})$. Thus it suffices to show that
\[
|L(M)|^{-1} = |\epsilon(0, \pi_0, \text{Ad}, \psi)| \cdot |L(0, \pi_0, \text{Ad})|^{-1}.
\]
Recall that $M = \bigoplus_{d \geq 1} V_d(1-d)$, where V_d is the Artin motive as in [11, §1]. By Proposition 6.4 of [12], we have
\[
L(s, \pi_0, \text{Ad})^{-1} = \prod_{d \geq 1} \det(1 - q^{-s-d+1} \cdot \text{Frob}; V_d^f).
\]
where I_F is the inertia group of F. Since V_d is self-dual, we have
\[
|L(M)|^{-1} = \prod_{d \geq 1} |\det(1 - q^{d-1} \cdot \text{Frob}; V_d^f)|
\]
\[
= \prod_{d \geq 1} q^{(d-1) \dim V_d^f} \cdot |L(0, \pi_0, \text{Ad})|^{-1}.
\]
Set $\hat{g} = \text{Lie}(\hat{G})$. Let (ρ, N) be the representation of W_F^e on \hat{g} associated to $\text{Ad} \circ \phi_0$. We can regard N as a regular nilpotent element in \hat{g}. By definition, we have
\[
|\epsilon(s, \pi_0, \text{Ad}, \psi)| = q^{-a(\hat{g})(s-1/2)},
\]
where $a(\hat{g}) = \dim \hat{g}^f - \dim \hat{g}_N^f$. By Proposition 5.2 of [12], we have $\hat{g} = \bigoplus_{d \geq 1} V_d \otimes \rho_{2d-2}$ as a representation of $\Gamma \times \text{SL}(2, \mathbb{C})$. Here ρ_k is the irreducible representation of $\text{SL}(2, \mathbb{C})$ of dimension $k+1$. Hence we have
\[
a(\hat{g}) = 2 \sum_{d \geq 1} (d-1) \dim V_d^f.
\]
This completes the proof.

Thus we obtain
\[
d(\pi_0) = \frac{1}{|S_{\phi_0}^s|} \cdot |\gamma(0, \pi_0, \text{Ad}, \psi)|.
\]

3.4. Unipotent discrete series representations. Let G be a connected adjoint split exceptional group of rank l over F. Let $\phi: L_F \to {}^L G$ be an elliptic Langlands parameter. We assume that ϕ is trivial on the inertia group I_F of F. Put
\[
t = \phi \left(\text{Frob} \times \begin{pmatrix} q^{-1/2} & 0 \\ 0 & q^{1/2} \end{pmatrix} \right).
\]
We may assume that $t \in T$. Let $\hat{\Sigma}$ denote the set of roots of T in \hat{G}. For $i \in \mathbb{Z}$, put
\[
\hat{\Sigma}(i) = \{ \hat{\alpha} \in \hat{\Sigma} \mid \hat{\alpha}(t) = q^{-i/2} \}.
\]
For each $\rho \in \Pi(S_{\phi}, \chi_G)$, Reeder defined a discrete series representation π_ρ of G and showed that
\[
d(\pi_\rho) = \frac{q^N \dim \rho}{|S_{\phi}^s|} \cdot \prod_{\hat{\alpha} \in \hat{\Sigma} - \Sigma(0)} (\hat{\alpha}(t) - 1) \cdot \frac{\text{vol}(I)}{\prod_{\hat{\alpha} \in \hat{\Sigma} - \Sigma(2)} (q\hat{\alpha}(t) - 1) \cdot \text{vol}(I)^{-1}}
\]
(cf. [29] (0.3)). Here N is the number of positive roots and I is an Iwahori subgroup of G. Note that $\text{vol}(I) = q^{-N}(1 - q^{-1})^l$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 3.4.

$$|\gamma(0, \pi_\rho, \Ad, \psi)| = q^{2N}(1 - q^{-1})^{-l} \cdot \prod_{\alpha \in \Sigma - \Sigma(0)} |\hat{\alpha}(t) - 1| \prod_{\alpha \in \Sigma - \Sigma(2)} |q\hat{\alpha}(t) - 1|. $$

Proof. It is easy to check that

$$\gamma(s, \pi_\rho, \Ad, \psi) = \left(\frac{1 - q^{-s}}{1 - q^{-1+s}}\right) \prod_{\alpha \in \Sigma} \frac{1 - \hat{\alpha}(t)^{-1}q^{-s}}{1 - \hat{\alpha}(t)^{-1}q^{-1+s}}. $$

By [29 (7.2a)], we have $|\Sigma(2)| = |\Sigma(0)| + l$. This yields the lemma. \qed

Thus we obtain

$$d(\pi_\rho) = \frac{\dim \rho}{|S^\Sigma_\phi|} \cdot |\gamma(0, \pi_\rho, \Ad, \psi)|$$

for $\rho \in \Pi(S_\phi, \chi_G)$.

3.5. Depth-zero supercuspidal representations. Let G be a connected reductive algebraic group of rank l over F. We assume that G^* is unramified and G is a pure inner form of G^*. For simplicity, we assume that the connected center of G is anisotropic. Let $\phi : L_F \to LG$ be an elliptic Langlands parameter. We assume that ϕ is trivial on I_F^+ and that the centralizer of $\phi(I_F)$ in G is T. Here I_F is the inertia group of F and I_F^+ is the wild inertia subgroup of I_F. Note that ϕ is trivial on $\SL(2, \mathbb{C})$. Put $\sigma = \phi(Frob)$. Then σ normalizes T and S^Σ_ϕ is isomorphic to T^σ, where T^σ is the centralizer of σ in T.

Let T be an unramified maximal torus of G determined by σ. Then T is anisotropic. Let T_0 be an unramified maximal torus of G which is maximally split. We extend T and T_0 to smooth group schemes over σ_F. For each $\rho \in \Pi(S_\phi, \chi_G)$, DeBacker and Reeder defined an irreducible supercuspidal representation π_ρ of G and showed that

$$d(\pi_\rho) = q^{l/2}|T(\mathbb{F}_q)|^{-1} \cdot q^{-l/2}|T_0(\mathbb{F}_q)| \cdot \vol(I)^{-1}$$

(cf. [8 §5.3]). Here I is an Iwahori subgroup of G. By [11 (4.11)], we have $\vol(I) = q^{-l-N}|T_0(\mathbb{F}_q)|$, where $N = (\dim G - l)/2$. Hence we have

$$d(\pi_\rho) = q^{l+N}|T(\mathbb{F}_q)|^{-1}. $$

Lemma 3.5.

$$|\gamma(0, \pi_\rho, \Ad, \psi)| = q^{l+N}|T(\mathbb{F}_q)|^{-1} \cdot |T^\sigma|. $$

Proof. Set $\hat{\mathfrak{g}} = \Lie(\hat{G})$. Then $\hat{\mathfrak{g}}^T = \Lie(T)$. Here the action of W_F on $\hat{\mathfrak{g}}$ is associated to $\Ad \circ \phi$. By definition, we have

$$L(s, \pi_\rho, \Ad) = \det(1 - q^{-s} \cdot \sigma; \Lie(T))^{-1}. $$

Hence we have

$$L(1, \pi_\rho, \Ad) = q^k|T(\mathbb{F}_q)|^{-1}. $$

Since T^σ is isomorphic to $\{x \in X_*(T) \otimes \mathbb{C} | (1 - \sigma)x \in X_*(T)\}/X_*(T)$, we have

$$|L(0, \pi_\rho, \Ad)|^{-1} = |\det(1 - \sigma; \Lie(T))| = |T^\sigma|. $$

By definition, we have

$$|\epsilon(s, \pi_\rho, \Ad, \psi)| = q^{-a(\hat{\mathfrak{g}})(s-1/2)},$$

where $a(\hat{\mathfrak{g}}) = \dim \hat{\mathfrak{g}}/\hat{\mathfrak{g}}^T = 2N$. This completes the proof. \qed
Thus we obtain
\[d(\pi_\rho) = \frac{1}{|\mathcal{S}_\phi^2|} \cdot |\gamma(0, \pi_\rho, \Ad, \psi)| \]
for \(\rho \in \Pi(S_\phi, \chi_G) \).

4. Proof of Theorem 3.1

In this section, we give a new proof of the result of Silberger and Zink [35], [37].

Let \(\pi \) be a discrete series representation of \(GL(n, F) \) and let \(V_\pi \) be the space of \(\pi \). We fix an invariant hermitian inner product \(\langle \cdot, \cdot \rangle \) on \(V_\pi \) and equip \(V_\pi \otimes V_\pi \) with the invariant hermitian inner product such that \(\langle u \otimes v, u' \otimes v' \rangle = \langle u, u' \rangle \langle v, v' \rangle \).

Let \(G^2 = GL(2n, F) \). Let \(F^2 = M^2 \sigma^2 \) be a parabolic subgroup of \(G^2 \) given by
\[
M^2 = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a' \end{array} \right) \mid a, a' \in GL(n, F) \right\},
\]
\[
N^2 = \left\{ \left(\begin{array}{cc} 1_n & x \\ 0 & 1_n \end{array} \right) \mid x \in \text{Mat}_{n \times n}(F) \right\}.
\]

We consider an induced representation
\[
I(s, \pi \otimes \pi) = \text{Ind}_{F^2}^{G^2}(\pi | \det |_{F^2}^{s/2} \otimes \pi | \det |_{F^2}^{-s/2})
\]
for \(s \in \mathbb{C} \). Put
\[
w = \left(\begin{array}{cc} 0 & 1_n \\ -1_n & 0 \end{array} \right) \in G^2.
\]
For \(\phi \in I(s, \pi \otimes \pi) \) and \(g \in G^2 \), the integral
\[
M(s, w, \pi \otimes \pi)\phi(g) = \int_{\text{Mat}_{n \times n}(F)} \phi \left(w^{-1} \left(\begin{array}{cc} 1_n & x \\ 0 & 1_n \end{array} \right) g \right) \, dx
\]
is absolutely convergent for \(\text{Re}(s) > 0 \), has a meromorphic continuation to the whole \(s \)-plane, and defines an intertwining operator
\[
M(s, w, \pi \otimes \pi) : I(s, \pi \otimes \pi) \longrightarrow I(-s, w(\pi \otimes \pi)).
\]
Here \(dx \) is the Haar measure on \(\text{Mat}_{n \times n}(F) \) with \(\text{vol}(\text{Mat}_{n \times n}(F), \, dx) = 1 \).

Lemma 4.1. There exists a constant \(\alpha \in \mathbb{C} \) with \(|\alpha| = 1 \) such that
\[
(\text{Res} \ M(s, w, \pi \otimes \pi)\phi(1), u' \otimes v')
\]
\[= \alpha (\log q)^{-1} (1 - q^{-1}) \gamma(0, \pi, \Ad, \psi)^{-1} (\phi(1), v' \otimes u') \]
for \(\phi \in I(s, \pi \otimes \pi) \) and \(u', v' \in V_\pi \). Here \(\psi \) is a non-trivial additive character of \(F \) of order zero.

Proof. Set \(I(\pi \otimes \pi) = I(0, \pi \otimes \pi) \). Let \(\text{sw} : V_\pi \otimes V_\pi \to V_\pi \otimes V_\pi \) be an isomorphism given by \(\text{sw}(u \otimes v) = v \otimes u \). Then \(\text{sw} \) induces an isomorphism \(\text{sw} : I(w(\pi \otimes \pi)) \to I(\pi \otimes \pi) \). We define a normalized intertwining operator
\[
N(w, \pi \otimes \pi) : I(\pi \otimes \pi) \longrightarrow I(\pi \otimes \pi)
\]
by
\[N(w, \pi \otimes \pi) = \text{sw} \lim_{s \to 0} \gamma(s, \pi \times \pi, \psi) M(s, w, \pi \otimes \pi).
\]
By Theorem 7.9 of [32], \(N(w, \pi \otimes \pi) \) is unitary. Since \(I(\pi \otimes \pi) \) is irreducible, there exists a constant \(\alpha \in \mathbb{C} \) with \(|\alpha| = 1 \) such that
\[N(w, \pi \otimes \pi) = \alpha \text{id},\]
Let \(\text{Lemma 4.2.} \) in \(P \), i.e.,

\[
\text{Res}_{s=0} M(s, w, \pi \otimes \pi) \phi(g) = \alpha \text{Res}_{s=0} \gamma(s, \pi \times \pi, \psi)^{-1} \phi(g)
\]

for \(\phi \in I(s, \pi \otimes \pi) \) and \(g \in G^s \).

Let

\[
\tilde{N}^s = \left\{ \begin{pmatrix} 1_n & 0 \\ x & 1_n \end{pmatrix} \middle| x \in \text{Mat}_{n \times n}(F) \right\}
\]

and \(L = \text{Mat}_{n \times n}(a_F) \). Let \(1_L \) denote the characteristic function of \(L \).

Lemma 4.2. Let \(u, v \in V_\pi \). We define \(\phi \in I(s, \pi \otimes \pi) \) which has compact support in \(P^s \tilde{N}^s \) modulo \(P^s \) by

\[
\phi \left(\begin{pmatrix} 1_n & 0 \\ x & 1_n \end{pmatrix} \right) = \begin{cases} u \otimes v & \text{if } x \in L, \\ 0 & \text{if } x \notin L. \end{cases}
\]

Then

\[
\begin{align*}
\text{Res}_{s=0} M(s, w, \pi \otimes \pi) \phi(1), u' \otimes v' \\
= (n \log q)^{-1} (1 - q^{-1}) d(\pi)^{-1} (\phi(1), v' \otimes u')
\end{align*}
\]

for \(u', v' \in V_\pi \).

Proof. The lemma follows from Proposition 5.1 of [34]. We include the proof for the sake of completeness.

As in [33], [34], we have

\[
\begin{align*}
(M(s, w, \pi \otimes \pi) \phi(1), u' \otimes v') \\
= \int_{\text{GL}(n, F)} 1_L(x^{-1}) |\det(x)|^{-s-n} (\pi(x^{-1})u \otimes \pi(x)v, u' \otimes v') \, dx \\
= \int_{\text{GL}(n, F)} 1_L(x) |\det(x)|^{-s-n} (\pi(x)u, u' \otimes v') (\pi(x)v', v) \, d^x x \\
= \int_{\text{GL}(n, F)/F^x} \varphi_s(x)(\pi(x)u, u' \otimes v') (\pi(x)v', v) \, d^x x,
\end{align*}
\]

where \(d^x x = |\det(x)|^{-n} \, dx \) and

\[
\varphi_s(x) = |\det(x)|^{-n} \int_{F^x} 1_L(zx) |z|_{F}^{-ns} \, d^x z.
\]

For \(x = (x_{ij}) \in \text{GL}(n, F) \), we have

\[
\int_{F^x} 1_L(zx) |z|_{F}^{-ns} \, d^x z = \int_{F^{nm}} |z|_{F}^{-ns} \, d^x z = q^{mn s} (1 - q^{-ns})^{-1} (1 - q^{-1}),
\]

where \(m = \min(\text{ord}_F(x_{ij})) \). Note that this integral is absolutely convergent for \(\text{Re}(s) > 0 \). Hence we have

\[
\begin{align*}
\text{Res}_{s=0} M(s, w, \pi \otimes \pi) \phi(1), u' \otimes v' \\
= (n \log q)^{-1} (1 - q^{-1}) \int_{\text{GL}(n, F)/F^x} (\pi(x)u, u' \otimes v') (\pi(x)v', v) \, d^x x \\
= (n \log q)^{-1} (1 - q^{-1}) d(\pi)^{-1} (u, v')(v, u').
\end{align*}
\]
This calculation is justified since
\[\varphi_s(x) \leq (1 - q^{-ns})^{-1}(1 - q^{-1}) \]
for \(s \in \mathbb{R}_{>0} \). □

By Lemmas 4.1 and 4.2 we have \(d(\pi) = \alpha_n^{-1}n^{-1}\gamma(0, \pi, \text{Ad}, \psi) \). This completes the proof of Theorem 3.1.

5. Twisted characters

Let \(F \) be a non-archimedean local field of characteristic zero and let \(\psi \) be a non-trivial additive character of \(F \) of order zero. Let \(G = \text{Res}_{E/F} \text{GL}(n) \), where \(E \) is a quadratic extension of \(F \) and \(n \) is odd. Let \(\sigma \) be the non-trivial automorphism of \(E \) over \(F \) and let \(\omega_{E/F} \) be the quadratic character of \(F^\times \) associated to \(E/F \) by class field theory. Put \(\theta(g) = \text{Ad}(J_n)(\sigma(1g^{-1})) \) for \(g \in G \), where
\[
J_n = \begin{pmatrix}
0 & \cdots & 0 & 1 \\
0 & \cdots & -1 & 0 \\
\vdots & \ddots & \ddots & \vdots \\
(-1)^{n-1} & \cdots & 0 & 0
\end{pmatrix} \in \text{GL}(n)
\]
and \(\sigma \) is regarded as an automorphism of \(G \) over \(F \).

Let \(\pi \) be a discrete series representation of \(G \) such that \(\pi \simeq \pi \circ \theta \). We fix an isomorphism \(\pi(\theta) : \pi \rightarrow \pi \circ \theta \) such that \(\pi(\theta)^2 = \text{id} \) and we define a distribution \(J^\theta(\pi) \) by
\[
J^\theta(\pi)(f) = J^0(\pi, f) = \text{trace}(\pi(f)\pi(\theta))
\]
for \(f \in C_0^\infty(G) \). By Theorem 1 of [5], \(J^0(\pi) \) is a locally integrable function on \(G \) which is locally constant on \(G_{\theta, \text{reg}} \). Here \(G_{\theta, \text{reg}} \) is the set of \(\theta \)-regular and \(\theta \)-semisimple elements in \(G \). Let \(G_\theta \) denote the identity component of \(\{ g \in G | \theta(g) = g \} \) and \(g_\theta \) the Lie algebra of \(G_\theta \). By Theorem 3 of [5], we have the expansion
\[J^0(\pi, \exp(X)) = \sum_{\mathcal{O}} c_{\mathcal{O}, \theta}(\pi) \hat{\mu}_\mathcal{O}(X) \]
for \(X \in g_\theta \) sufficiently near zero, where \(\mathcal{O} \) runs over nilpotent \(G_\theta \)-orbits in \(g_\theta \) and where \(\hat{\mu}_\mathcal{O} \) is the Fourier transform of the invariant measure \(\mu_\mathcal{O} \) on \(\mathcal{O} \).

Theorem 5.1. Let \(\pi \) be a discrete series representation of \(G \) such that \(\pi \simeq \pi \circ \theta \) and such that \(L(s, \pi, r) \) has a pole at \(s = 0 \), where \(r \) is the Asai representation of \(LG \). Then there exists a constant \(c \in \mathbb{R}_{>0} \) which does not depend on \(\pi \) such that
\[|c_{\mathcal{O}, \theta}(\pi)| = c|\gamma(0, \pi, r, \psi)|, \]
where \(r' = r \otimes \omega_{E/F} \).

Remark 5.2. By the result of Henniart [18], we have
\[
L_{LS}(s, \pi, r) = L(s, \pi, r),
\]
\[
\gamma_{LS}(s, \pi, r', \psi) = \alpha \gamma(s, \pi, r', \psi),
\]
where the subscript \(\text{LS} \) indicates local factors defined by the Langlands-Shahidi method and \(\alpha \in \mathbb{C} \) is a root of unity.
6. Twisted orbital integrals

Let \(F \) be a non-archimedean local field of characteristic zero. Let \(G \) be a connected reductive algebraic group over \(F \) and let \(\theta \) be a quasi-semisimple automorphism of \(G \) over \(F \). Let \(Z \) be the center of \(G \). For \(\gamma \in G \) and \(f \in C_c^\infty(G/(1-\theta)Z) \), put

\[
J^\theta(\gamma, f) = \int_{ZG_{\gamma}\theta G} f(g^{-1}\gamma\theta(g)) \, dg.
\]

Here \(G_{\gamma\theta} \) is the identity component of \(\{g \in G \mid g^{-1}\gamma\theta(g) = \gamma\} \). By [28] and Lemma 2.1 of [1], this integral is absolutely convergent. By Proposition 7.1 of [33], we have the expansion

\[
J^\theta(\exp(X), f) = \sum_u \Gamma_{u,\theta}(X) J^\theta(u, f)
\]

for \(\theta \)-regular and \(\theta \)-semisimple elements \(X \) in \(G_{\theta} \) sufficiently near zero. Here \(u \) runs over representatives for unipotent orbits in \(G_{\theta} \).

Let \(G \) and \(\theta \) be as in [1]. By [6], \(J^\theta(\gamma, f) \) is absolutely convergent and (6.1) holds even if \(f \) is a Schwartz function.

7. Proof of Theorem 5.1

Throughout this section, we ignore the normalization of measures since it does not affect the proof. Let \(G \) and \(\theta \) be as in [1]. Let \(\pi \) be a discrete series representation of \(G \) such that \(\pi \simeq \pi \circ \theta \) and such that \(L(s, \pi, r) \) has a pole at \(s = 0 \), where \(r \) is the Asai representation of \(L^G \). Let \(V_\pi \) be the space of \(\pi \). We fix an invariant hermitian inner product \(\langle \cdot, \cdot \rangle \) on \(V_\pi \) and an isomorphism \(\pi(\theta) : V_\pi \rightarrow V_\pi \) such that \(\pi(\theta)\pi(g) = \pi(\theta(g))\pi(\theta) \) for \(g \in G \) and such that \(\pi(\theta)^2 = 1 \). Then \(\langle \cdot, \cdot \rangle \) is \(\pi(\theta) \)-invariant.

Let \(G^\sharp = U(2n, F) = \{g \in GL(2n, E) \mid gQ_n\sigma(g) = Q_n\} \), where

\[
Q_n = \begin{pmatrix} 0 & J_n \\ -J_n & 0 \end{pmatrix}.
\]

Let \(P^\sharp = M^\sharp N^\sharp \) be a parabolic subgroup of \(G^\sharp \) given by

\[
M^\sharp = \left\{ \begin{pmatrix} a & 0 \\ 0 & \theta(a) \end{pmatrix} \mid a \in GL(n, E) \right\},
\]

\[
N^\sharp = \left\{ \begin{pmatrix} 1_n & x \\ 0 & 1_n \end{pmatrix} \mid x \in X \right\},
\]

where \(X = \{x \in \text{Mat}_{n \times n}(E) \mid \text{Ad}(J_n)(\sigma(t)x) = x\} \). As in [24] we consider an induced representation

\[
I(s, \pi) = \text{Ind}_{P^\sharp E}^{G^\sharp}(\pi | \det |_{E}^{s/2})
\]

for \(s \in \mathbb{C} \). Put

\[
w = \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix} \in G^\sharp.
\]

For \(\phi \in I(s, \pi) \) and \(g \in G^\sharp \), the integral

\[
M(s, w, \pi)\phi(g) = \int_X \phi \left(w^{-1} \begin{pmatrix} 1_n & x \\ 0 & 1_n \end{pmatrix} g \right) \, dx
\]
Then there exists a constant \(c \in \mathbb{C} \) with \(|c| = 1\) such that

\[
\left(\Res_{s=0} M(s, w, \pi) \phi(1), v' \right) = c \Res_{s=0} \gamma(s, \pi, r, \psi)^{-1}(\phi(1), \pi(\theta)v')
\]

for \(\phi \in I(s, \pi) \) and \(v' \in V_\pi \).

Proof. We remark that \(I(0, \pi) \) is irreducible since \(L(s, \pi, r) \) has a pole at \(s = 0 \). As in the proof of Lemma 4.1, the lemma follows from the result of Shahidi 32. \(\square \)

Let

\[
\tilde{N}^a = \left\{ \begin{pmatrix} 1_n & 0 \\ x & 1_n \end{pmatrix} \mid x \in X \right\}
\]

and let \(L = X \cap \text{Mat}_{n \times n}(\mathbb{O}_E) \). Let \(1_L \) denote the characteristic function of \(L \).

Lemma 7.2. Let \(v, v' \in V_\pi \). Let \(f \) be a matrix coefficient of \(\pi \) given by \(f(g) = (\pi(g)v, v') \) for \(g \in G \). We define \(\phi \in I(s, \pi) \) which has compact support in \(P^1 \tilde{N}^a \) modulo \(P^1 \pi \) by

\[
\phi \left(\begin{pmatrix} 1_n & 0 \\ x & 1_n \end{pmatrix} \right) = \begin{cases} v & \text{if } x \in L, \\ 0 & \text{if } x \notin L. \end{cases}
\]

Then there exists a constant \(c \in \mathbb{R}_{>0} \) which does not depend on \(\pi \) such that

\[
\left(\Res_{s=0} M(s, w, \pi) \phi(1), v' \right) = cJ^0(1, f).
\]

Proof. The lemma follows from the result of Goldberg 10. We include the proof for the sake of completeness.

We fix \(\delta \in F^\times - N_{E/F}(E^\times) \). Set \(X' = \{ x \in X \mid \det(x) \neq 0 \} \). Then \(G \) acts on \(X' \) by \(x \mapsto g^{-1}x\theta(g) \). Let \(G' \backslash X' \) denote the set of \(G \)-orbits in \(X' \). Note that \(\{1, \delta\} \) is a set of representatives for \(G \backslash X' \). We define a \(G \)-invariant measure \(d^x x \) on \(X' \) by \(d^x x = |\det(x)|_E^{-n/2} dx \).

As in 10 2, we have

\[
(M(s, w, \pi)\phi(1), v')
\]

\[
= \int_{X'} 1_L(x^{-1}) |\det(x)|_E^{-s/2-n/2}(\pi(x^{-1})v, v') dx
\]

\[
= \int_{X'} 1_L(x) |\det(x)|_E^{s/2} f(x) d^x x
\]

\[
= \sum_{\gamma \in G \backslash X'} \int_{G \gamma, \theta \backslash G} 1_L(g^{-1} \gamma \theta(g)) |\det(g^{-1} \gamma \theta(g))|_E^{s/2} f(g^{-1} \gamma \theta(g)) dg
\]

\[
= \sum_{\gamma \in G \backslash X'} \int_{ZG \gamma, \theta \backslash G} \varphi_s(g^{-1} \gamma \theta(g)) f(g^{-1} \gamma \theta(g)) dg,
\]

where

\[
\varphi_s(x) = |\det(x)|_E^{s/2} \int_{E^\times} 1_L(z \sigma(z)x)|z|_E^{ns} d^z z.
\]

For \(x = (x_{ij}) \in X' \), we have

\[
\int_{E^\times} 1_L(z \sigma(z)x)|z|_E^{ns} d^z z = q_E^{(m/2)ns}(1-q_E^{-ns})^{-1}(1-q_E^{-1}),
\]

is absolutely convergent for \(\text{Re}(s) > 0 \), has a meromorphic continuation to the whole \(s \)-plane, and defines an intertwining operator

\[
M(s, w, \pi) : I(s, \pi) \rightarrow I(-s, w(\pi)).
\]
where \(m = \min(\text{ord}_E(x_{ij})) \). Note that this integral is absolutely convergent for \(\Re(s) > 0 \). Hence we have
\[
(\text{Res}_{s=0} M(s, w, \pi)\phi(1), v') = (n \log q_E)^{-1}(1 - q_E^{-1}) \sum_{\gamma \in G \setminus X'} J^0(\gamma, f).
\]

This calculation is justified since
\[
\phi_s(x) \leq (1 - q_E^{-ns})^{-1}(1 - q_E^{-1})
\]
for \(s \in \mathbb{R}_{>0} \). As in [10, §2], the central character of \(\pi \) is trivial on \(F^\times \). Hence we have
\[
J^0(\delta, f) = J^0(1, f).
\]

This completes the proof. \(\square \)

Lemma 7.3. Let \(v, v' \in V_\pi \). Let \(f \) be a matrix coefficient of \(\pi \) given by \(f(g) = (\pi(g)v, v') \) for \(g \in G \). Then
\[
J^0(\gamma, f) = d(\pi)^{-1}(v, \pi(\theta)v')\mu(\gamma)
\]
for \(\theta \)-regular and \(\theta \)-elliptic elements \(\gamma \) in \(G \).

Proof. We proceed as in the proof of Proposition 5 of [7]. Let \(\gamma \) be a \(\theta \)-regular and \(\theta \)-elliptic element in \(G \). Let \(\varphi \in C_c^\infty(G) \). We assume that the support of \(\varphi \) is contained in the set of \(\theta \)-regular and \(\theta \)-elliptic elements in \(G \). By the Schur orthogonality relations, we have
\[
\int_{Z \setminus G} (\pi(g)^{-1}\pi(\varphi)\pi(\theta(g))v, v') dg = d(\pi)^{-1}(v, \pi(\theta)v')\mu(\gamma).
\]
The left-hand side is equal to
\[
\int_{Z \setminus G} \int_G \varphi(h)f(g^{-1}h\theta(g)) dh dg = \int_G \varphi(h)\int_{Z \setminus G} f(g^{-1}h\theta(g)) dg dh.
\]
Let \(\varphi \) tend to the Dirac measure at \(\gamma \). This yields the lemma. \(\square \)

Let \(v, v' \in V_\pi \). Let \(f \) be a matrix coefficient of \(\pi \) given by \(f(g) = (\pi(g)v, v') \) for \(g \in G \). By [5.1], [6.1], and Lemma 7.3 we have
\[
(v, \pi(\theta)v') \sum_\mathcal{O} c_{\mathcal{O}, \theta}(\pi)\mu_\mathcal{O}(X) = d(\pi)\sum_u \Gamma_{u, \theta}(X)J^0(u, f)
\]
for \(\theta \)-regular and \(\theta \)-elliptic elements \(X \) in \(g_\theta \) sufficiently near zero. For \(t \in F^\times \), we have
\[
\mu_\mathcal{O}(t^2X) = |t|_F^{-\text{dim} \mathcal{O}}\mu_\mathcal{O}(X),
\]
\[
\Gamma_{u, \theta}(t^2X) = |t|_F^{-\text{dim} \text{Ad}(G_\theta)(u)}\Gamma_{u, \theta}(X).
\]
Note that \(\mu_0 = \Gamma_{1, \theta} = 1 \) if measures are suitably normalized. By homogeneity, we obtain
\[
(v, \pi(\theta)v')c_{0, \theta}(\pi) = d(\pi)J^0(1, f).
\]
By Theorem 5.1 \(d(\pi) \) is equal to
\[
|\lim_{s \to 0} s^{-1}\gamma(s, \pi \times \hat{\pi}, \psi)| = |\lim_{s \to 0} s^{-1}\gamma(s, \pi, r, \psi)| \cdot |\gamma(0, \pi, r', \psi)|
\]
up to a constant which does not depend on \(\pi \). Thus Theorem 5.1 follows from Lemmas 7.1 and 7.2.
Lemma 8.1. Let ϕ be a tempered Langlands parameter. We define a tempered Langlands parameter $\phi : L_F \to L^\infty G$ by $\phi = \xi \circ \phi_H$. Let π be the irreducible tempered representation of G associated to ϕ by the local Langlands conjectures hold (cf. [2]).

8. Twisted endoscopy

Let F be a non-archimedean local field of characteristic zero. Let G and θ be as in §5. We consider a set of endoscopic data $(H, H, 1, \xi)$ for $(G, \theta, 1)$ defined as follows. Recall that $G = \text{Res}_{E/F} \text{GL}(n)$, where E is a quadratic extension of F and where n is odd. We have $L^\infty G = G \times W_F$, where $G = \text{GL}(n, \mathbb{C}) \times \text{GL}(n, \mathbb{C})$ and the action of $w \in W_F$ is given by

$$ (g_1, g_2) \mapsto \begin{cases} (g_1, g_2) & \text{if } w \in W_E, \\ (g_2, g_1) & \text{if } w \notin W_E. \end{cases} $$

Let $H = \text{U}(n)$ be the quasi-split unitary group in n variables. Then $L^\infty H = H \times W_F$, where $H = \text{GL}(n, \mathbb{C})$ and the action of $w \in W_F$ is given by

$$ h \mapsto \begin{cases} h & \text{if } w \in W_E, \\ \text{Ad}(J_n)(h^{-1}) & \text{if } w \notin W_E. \end{cases} $$

We define $\xi : L^\infty H \to L^\infty G$ by $\xi(h \times w) = (h, \text{Ad}(J_n)(h^{-1})) \times w$.

Lemma 8.1. Let r be the Asai representation of $L^\infty G$ on $\mathbb{C}^n \otimes \mathbb{C}^n$. Then the adjoint representation Ad of $L^\infty H$ on $\text{Lie}(H)$ is isomorphic to $r' \circ \xi$, where $r' = r \otimes \omega_{E/F}$.

Proof. Recall that r is defined by

$$ r((g_1, g_2) \times 1)(x \otimes y) = g_1 x \otimes g_2 y, $$

$$ r((1, 1) \times w)(x \otimes y) = \begin{cases} x \otimes y & \text{if } w \in W_E, \\ y \otimes x & \text{if } w \notin W_E. \end{cases} $$

It is easy to check that

$$ \text{Ad}(h \times 1)(X) = \text{Ad}(h)(X), $$

$$ \text{Ad}(1 \times w)(X) = \begin{cases} X & \text{if } w \in W_E, \\ -\text{Ad}(J_n)(X) & \text{if } w \notin W_E. \end{cases} $$

Hence the isomorphism $\mathbb{C}^n \otimes \mathbb{C}^n \to \text{Lie}(H)$ given by $x \otimes y \mapsto x'yJ_n$ is intertwining.

It is believed that the following conjectures hold (cf. [2]).

Conjecture 8.2. For $f \in C_c^\infty(G)$, there exists $f^H \in C_c^\infty(H)$ such that f and f^H have matching orbital integrals (cf. [25, §5.5]).

Conjecture 8.3. Let $\phi_H : L_F \to L^\infty H$ be a tempered Langlands parameter. We define a tempered Langlands parameter $\phi : L_F \to L^\infty G$ by $\phi = \xi \circ \phi_H$. Let π be the irreducible tempered representation of G associated to ϕ by the local Langlands conjectures hold (cf. [2]).
correspondence [16], [17]. Then there exists a constant $c \in \mathbb{C}$ such that $|c|$ does not depend on ϕ_H and such that

$$J^\theta(\pi, f) = c \sum_{\pi_H \in \Pi_{\phi_H}(H)} \langle 1, \pi_H \rangle J(\pi_H, f^H).$$

Here f and f^H have matching orbital integrals.

For $f \in C_c^\infty(G)$, let $f^{G_\theta} \in C_c^\infty(G_\theta)$ be a decent of f, where G_θ is the identity component of $\{g \in G | \theta(g) = g\}$. Let $f^H \in C_c^\infty(H)$. Assume that the supports of f and f^H are sufficiently small. By [15], [5], we have

$$J^\theta(\pi, f) = \sum_{\mathcal{O}} c_{\mathcal{O}, \theta}(\pi) \mu_{\mathcal{O}}(f^{G_\theta} \circ \exp),$$

$$J(\pi_H, f^H) = \sum_{\mathcal{O}_H} c_{\mathcal{O}_H}(\pi_H) \mu_{\mathcal{O}_H}(f^H \circ \exp).$$

Here \mathcal{O} (resp. \mathcal{O}_H) runs over nilpotent G_θ-orbits (resp. H-orbits) in $g_\theta = \text{Lie}(G_\theta)$ (resp. $\mathfrak{h} = \text{Lie}(H)$).

Lemma 8.4. Assume that Conjectures 8.2 and 8.3 hold. Let $\phi_H : L_F \to L^H$ be a tempered Langlands parameter and let π be the irreducible tempered representation of G as in Conjecture 8.3. Then there exists a constant $c \in \mathbb{C}$ such that $|c|$ does not depend on ϕ_H and such that

$$c_{0, \theta}(\pi) = c \sum_{\pi_H \in \Pi_{\phi_H}(H)} \langle 1, \pi_H \rangle c_0(\pi_H).$$

Proof. We proceed as in [22 §9], [21 §8]. Assume that the supports of f and f^H are sufficiently small. If $t \in F^\infty$ is sufficiently small, then we can define $f_t \in C_c^\infty(G)$ by $f_t(\exp(X)) = f(\exp(t^{-1}X))$. Similarly, we can define $f_t^H \in C_c^\infty(H)$. Then

$$\hat{\mu}_{\mathcal{O}}(f_{t_2}^{G_\theta} \circ \exp) = |t|_F^{2 \dim g_\theta - \dim \mathcal{O}} \mu_{\mathcal{O}}(f^{G_\theta} \circ \exp),$$

$$\hat{\mu}_{\mathcal{O}_H}(f_{t_2}^H \circ \exp) = |t|_F^{2 \dim \mathfrak{h} - \dim \mathcal{O}_H} \mu_{\mathcal{O}_H}(f^H \circ \exp).$$

Note that $\dim g_\theta = \dim \mathfrak{h}$.

Assume that f and f^H have matching orbital integrals. By Lemma 8.5 of [21], f_t and f_t^H have matching orbital integrals. Hence we have

$$\sum_{\mathcal{O}} c_{\mathcal{O}, \theta}(\pi) \hat{\mu}_{\mathcal{O}}(f_{t_2}^{G_\theta} \circ \exp) = c \sum_{\mathcal{O}_H} \sum_{\pi_H \in \Pi_{\phi_H}(H)} \langle 1, \pi_H \rangle c_{\mathcal{O}_H}(\pi_H) \hat{\mu}_{\mathcal{O}_H}(f_{t_2}^H \circ \exp).$$

By homogeneity, we obtain

$$c_{0, \theta}(\pi) \hat{\mu}_0(\pi) = c \sum_{\pi_H \in \Pi_{\phi_H}(H)} \langle 1, \pi_H \rangle c_0(\pi_H) \hat{\mu}_0(f^H \circ \exp).$$

□

Let π_H be a discrete series representation of H and let $\phi_H : L_F \to L^H$ be the (conjectural) Langlands parameter associated to π_H. Let π be the irreducible tempered representation of G as in Conjecture 8.3. If π_H is stable, then π is expected to be square integrable.
Proposition 8.5. Assume that Conjectures 8.2 and 8.3 hold. Let π_H be a stable discrete series representation of H. Then
\[d(\pi_H) = \frac{1}{2} \cdot |\gamma(0, \pi_H, \text{Ad}, \psi)|. \]

Proof. By [15], [30], we have
\[c_0(\pi_H) = (-1)^l_0 d(\pi_{H,0})^{-1} \cdot d(\pi_H), \]
where l_0 is the semisimple F-rank of H and $\pi_{H,0}$ is the Steinberg representation of H. By Theorems 8.1 and Lemmas 8.1 and 8.4, there exists a constant $c \in \mathbb{R}_{>0}$ which does not depend on π_H such that
\[d(\pi_H) = c |\gamma(0, \pi_H, \text{Ad}, \psi)|. \]
Since $\pi_{H,0}$ is stable and $d(\pi_{H,0}) = 2^{-1} |\gamma(0, \pi_{H,0}, \text{Ad}, \psi)|$, we have $c = 2^{-1}$. \hfill \Box

For $n = 3$, Conjectures 8.2 and 8.3 were proved by Rogawski [31]. Thus we obtain the following theorem.

Theorem 8.6. Let $H = U(3)$ be the quasi-split unitary group in three variables. Let π_H be a stable discrete series representation of H. Then
\[d(\pi_H) = \frac{1}{2} \cdot |\gamma(0, \pi_H, \text{Ad}, \psi)|. \]
In particular, Conjecture 1.4 holds for π_H.

References

Acknowledgments

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
E-mail address: hiraga@math.kyoto-u.ac.jp

Department of Mathematics, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
E-mail address: ichino@sci.osaka-cu.ac.jp

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
E-mail address: ikeda@math.kyoto-u.ac.jp