$K$-regularity, $cdh$-fibrant Hochschild homology, and a conjecture of Vorst
HTML articles powered by AMS MathViewer
- by G. Cortiñas, C. Haesemeyer and C. Weibel PDF
- J. Amer. Math. Soc. 21 (2008), 547-561 Request permission
Abstract:
In this paper we prove that for an affine scheme essentially of finite type over a field $F$ and of dimension $d$, $K_{d+1}$-regularity implies regularity, assuming that the characteristic of $F$ is zero. This verifies a conjecture of Vorst.References
- SGA4II M. Artin, A. Grothendieck, and J. L. Verdier. Théorie des topos et cohomologie étale des schémas. Tome 2. Springer-Verlag, Berlin, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 270.
- Hyman Bass and M. Pavaman Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math. (2) 86 (1967), 16–73. MR 219592, DOI 10.2307/1970360
- A. K. Bousfield and E. M. Friedlander, Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80–130. MR 513569 chsw G. Cortiñas, C. Haesemeyer, M. Schlichting and C. A. Weibel. Cyclic homology, $cdh$-cohomology and negative $K$-theory. To appear in Annals of Math. Preprint. Available at http://www.math.uiuc.edu/K-theory/0722/, 2005.
- Joachim Cuntz and Daniel Quillen, Excision in bivariant periodic cyclic cohomology, Invent. Math. 127 (1997), no. 1, 67–98. MR 1423026, DOI 10.1007/s002220050115
- Barry H. Dayton and Charles A. Weibel, $K$-theory of hyperplanes, Trans. Amer. Math. Soc. 257 (1980), no. 1, 119–141. MR 549158, DOI 10.1090/S0002-9947-1980-0549158-6
- Thomas G. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), no. 2, 187–215. MR 793184, DOI 10.1016/0040-9383(85)90055-2
- Thomas G. Goodwillie, Relative algebraic $K$-theory and cyclic homology, Ann. of Math. (2) 124 (1986), no. 2, 347–402. MR 855300, DOI 10.2307/1971283
- Christian Haesemeyer, Descent properties of homotopy $K$-theory, Duke Math. J. 125 (2004), no. 3, 589–620. MR 2166754, DOI 10.1215/S0012-7094-04-12534-5
- Christian Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), no. 1, 195–216. MR 883882, DOI 10.1016/0021-8693(87)90086-X
- Christian Kassel and Arne B. Sletsjøe, Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology, Math. Scand. 70 (1992), no. 2, 186–192. MR 1189973, DOI 10.7146/math.scand.a-12395
- Jean-Louis Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970, DOI 10.1007/978-3-662-21739-9
- Carlo Mazza, Vladimir Voevodsky, and Charles Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. MR 2242284
- Ye. A. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic $K$-theory, Algebraic $K$-theory: connections with geometry and topology (Lake Louise, AB, 1987) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 279, Kluwer Acad. Publ., Dordrecht, 1989, pp. 241–342. MR 1045853
- Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117–189. MR 1744945
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Ton Vorst, Localization of the $K$-theory of polynomial extensions, Math. Ann. 244 (1979), no. 1, 33–53. With an appendix by Wilberd van der Kallen. MR 550060, DOI 10.1007/BF01420335
- Ton Vorst, Polynomial extensions and excision for $K_{1}$, Math. Ann. 244 (1979), no. 3, 193–204. MR 553251, DOI 10.1007/BF01420342
- Charles A. Weibel, Homotopy algebraic $K$-theory, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 461–488. MR 991991, DOI 10.1090/conm/083/991991
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Charles Weibel, Cyclic homology for schemes, Proc. Amer. Math. Soc. 124 (1996), no. 6, 1655–1662. MR 1277141, DOI 10.1090/S0002-9939-96-02913-9
- Charles Weibel, The Hodge filtration and cyclic homology, $K$-Theory 12 (1997), no. 2, 145–164. MR 1469140, DOI 10.1023/A:1007734302948
- Charles Weibel, The negative $K$-theory of normal surfaces, Duke Math. J. 108 (2001), no. 1, 1–35. MR 1831819, DOI 10.1215/S0012-7094-01-10811-9
Additional Information
- G. Cortiñas
- Affiliation: Departamento Matemática, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria Pab 1, 1428 Buenos Aires, Argentina, and Departamento Álgebra, Faculdad de Ciencias, Prado de la Magdalena s/n, 47005 Valladolid, Spain
- MR Author ID: 18832
- ORCID: 0000-0002-8103-1831
- Email: gcorti@agt.uva.es
- C. Haesemeyer
- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- Address at time of publication: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 SEO, 851 South Morgan Street, Chicago, Illinois 60607-7045
- MR Author ID: 773007
- Email: chh@math.uiuc.edu
- C. Weibel
- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08901
- MR Author ID: 181325
- Email: weibel@math.rutgers.edu
- Received by editor(s): May 15, 2006
- Published electronically: May 16, 2007
- Additional Notes: The first author’s research was partially supported by FSE and by grants ANPCyT PICT 03-12330, UBACyT-X294, JCyL VA091A05, and MEC MTM00958.
The last author’s research was partially supported by NSA grant MSPF-04G-184. - © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 547-561
- MSC (2000): Primary 19D35; Secondary 14F20, 13D03, 19D55
- DOI: https://doi.org/10.1090/S0894-0347-07-00571-1
- MathSciNet review: 2373359