Potentially semi-stable deformation rings
HTML articles powered by AMS MathViewer
- by Mark Kisin
- J. Amer. Math. Soc. 21 (2008), 513-546
- DOI: https://doi.org/10.1090/S0894-0347-07-00576-0
- Published electronically: September 20, 2007
- PDF | Request permission
Abstract:
Let $K/\mathbb {Q}_p$ be a finite extension and $G_K$ the absolute Galois group of $K$. For $(A^{\circ }, \mathfrak {m})$ a complete local ring with finite residue and $V_{A^{\circ }}$ a finite free $A^{\circ }$-module equipped with an action of $G_K$ , we show that $A^{\circ }[1/p]$ has a maximal quotient over which the representation $V_{A^{\circ }}$ is semi-stable with Hodge-Tate weights in a given range. We show an analogous result for representations which are potentially semi-stable of fixed Galois type and $p$-adic Hodge type. If $V_{A^{\circ }}$ is the universal deformation of $V_{A^{\circ }}\otimes _{A^{\circ }} A^{\circ }/\mathfrak {m}$, then we compute the dimension of $A^{\circ }[1/p]$ and we show that these rings are sometimes smooth. Finally we apply this theory to show, in some new cases, the compatibility of the $p$-adic Galois representation attached to a Hilbert modular form with the local Langlands correspondence at $p$.References
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8 [BC]BC L. Berger, P. Colmez, Familles de représentations de de Rham et monodromie $p$-adique, preprint (2007).
- Laurent Berger, Limites de représentations cristallines, Compos. Math. 140 (2004), no. 6, 1473–1498 (French, with English and French summaries). MR 2098398, DOI 10.1112/S0010437X04000879
- Arnaud Beauville and Yves Laszlo, Un lemme de descente, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 335–340 (French, with English and French summaries). MR 1320381
- Christophe Breuil and Ariane Mézard, Multiplicités modulaires et représentations de $\textrm {GL}_2(\textbf {Z}_p)$ et de $\textrm {Gal}(\overline \textbf {Q}_p/\textbf {Q}_p)$ en $l=p$, Duke Math. J. 115 (2002), no. 2, 205–310 (French, with English and French summaries). With an appendix by Guy Henniart. MR 1944572, DOI 10.1215/S0012-7094-02-11522-1
- Don Blasius and Jonathan D. Rogawski, Motives for Hilbert modular forms, Invent. Math. 114 (1993), no. 1, 55–87. MR 1235020, DOI 10.1007/BF01232663
- Christophe Breuil, Une remarque sur les représentations locales $p$-adiques et les congruences entre formes modulaires de Hilbert, Bull. Soc. Math. France 127 (1999), no. 3, 459–472 (French, with English and French summaries). MR 1724405
- Henri Carayol, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690
- Jonathan Dee, $\Phi$-$\Gamma$ modules for families of Galois representations, J. Algebra 235 (2001), no. 2, 636–664. MR 1805474, DOI 10.1006/jabr.1999.8272
- A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5–96 (1996). MR 1383213 [EK]EK M. Emerton, M. Kisin, Extensions of crystalline representations, Preprintreihe SFB 478 36, 49 pages.
- Gerd Faltings, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 1, 41–68. MR 1961134, DOI 10.1007/s10097-002-0045-x
- Gerd Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12 (1999), no. 1, 117–144. MR 1618483, DOI 10.1090/S0894-0347-99-00273-8
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- Jean-Marc Fontaine, Représentations $p$-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249–309 (French). MR 1106901
- Jean-Marc Fontaine, Représentations $p$-adiques semi-stables, Astérisque 223 (1994), 113–184 (French). With an appendix by Pierre Colmez; Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293972
- Jean-Marc Fontaine, Deforming semistable Galois representations, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 21, 11138–11141. Elliptic curves and modular forms (Washington, DC, 1996). MR 1491974, DOI 10.1073/pnas.94.21.11138
- Jean-Marc Fontaine and Bernadette Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions $L$, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 599–706 (French). MR 1265546, DOI 10.1090/pspum/055.1/1265546 [Gr]Gr A. Grothendieck, J. Dieudonné, Elèments de géometrie algèbrique I,II,III,IV, Inst. des Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1961-67). [Ki 1]Ki 1 M. Kisin, Moduli of finite flat group schemes and modularity, preprint (2004), 75 pages.
- Mark Kisin, Crystalline representations and $F$-crystals, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459–496. MR 2263197, DOI 10.1007/978-0-8176-4532-8_{7} [Ki 3]Ki 3 M. Kisin, The Fontaine-Mazur conjecture for $\operatorname {GL}_{2}$, preprint (2006). [L]L T. Liu, Torsion $p$-adic Galois representations and a conjecture of Fontaine, preprint (2006).
- B. Mazur, Deforming Galois representations, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 385–437. MR 1012172, DOI 10.1007/978-1-4613-9649-9_{7}
- Ravi Ramakrishna, On a variation of Mazur’s deformation functor, Compositio Math. 87 (1993), no. 3, 269–286. MR 1227448
- Takeshi Saito, Modular forms and $p$-adic Hodge theory, Invent. Math. 129 (1997), no. 3, 607–620. MR 1465337, DOI 10.1007/s002220050175 [Sa 2]Sa 2 T. Saito, Hilbert modular forms and $p$-adic Hodge theory, preprint.
- Richard Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), no. 2, 265–280. MR 1016264, DOI 10.1007/BF01388853
- Richard Taylor, On Galois representations associated to Hilbert modular forms. II, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 185–191. MR 1363502
- Richard Taylor, Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63 (1991), no. 2, 281–332. MR 1115109, DOI 10.1215/S0012-7094-91-06312-X
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559
Bibliographic Information
- Mark Kisin
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- MR Author ID: 352758
- Email: kisin@math.uchicago.edu
- Received by editor(s): April 13, 2006
- Published electronically: September 20, 2007
- Additional Notes: The author was partially supported by NSF grant DMS-0400666 and a Sloan Research Fellowship.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 513-546
- MSC (2000): Primary 11S20
- DOI: https://doi.org/10.1090/S0894-0347-07-00576-0
- MathSciNet review: 2373358