Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms
HTML articles powered by AMS MathViewer

by Andre Reznikov
J. Amer. Math. Soc. 21 (2008), 439-477
Published electronically: October 4, 2007


We use the uniqueness of various invariant functionals on irreducible unitary representations of $PGL_2(\mathbb {R})$ in order to deduce the classical Rankin-Selberg identity for the sum of Fourier coefficients of Maass cusp forms and its new anisotropic analog. We deduce from these formulas non-trivial bounds for the corresponding unipotent and spherical Fourier coefficients of Maass forms. As an application we obtain a subconvexity bound for certain $L$-functions. Our main tool is the notion of a Gelfand pair from representation theory.
    [Be]Be J. Bernstein, Eisenstein series, lecture notes. Park City, Utah (2004).
  • Joseph Bernstein and Andre Reznikov, Analytic continuation of representations and estimates of automorphic forms, Ann. of Math. (2) 150 (1999), no. 1, 329–352. MR 1715328, DOI 10.2307/121105
  • Joseph Bernstein and Andre Reznikov, Sobolev norms of automorphic functionals, Int. Math. Res. Not. 40 (2002), 2155–2174. MR 1930758, DOI 10.1155/S1073792802101139
  • Joseph Bernstein and Andre Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), no. 1, 19–37, 310 (English, with English and Russian summaries). MR 2074982, DOI 10.17323/1609-4514-2004-4-1-19-37
  • [BR4]BR4 —, Subconvexity of triple $L$-functions, preprint, arXiv: math.NT/0608555 (2006).
  • Armand Borel, Automorphic forms on $\textrm {SL}_2(\textbf {R})$, Cambridge Tracts in Mathematics, vol. 130, Cambridge University Press, Cambridge, 1997. MR 1482800, DOI 10.1017/CBO9780511896064
  • V. A. Borovikov, Uniform stationary phase method, IEE Electromagnetic Waves Series, vol. 40, Institution of Electrical Engineers (IEE), London, 1994. MR 1325462
  • Daniel Bump, The Rankin-Selberg method: an introduction and survey, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 41–73. MR 2192819, DOI 10.1515/9783110892703.41
  • Roelof W. Bruggeman and Yoichi Motohashi, A new approach to the spectral theory of the fourth moment of the Riemann zeta-function, J. Reine Angew. Math. 579 (2005), 75–114. MR 2124019, DOI 10.1515/crll.2005.2005.579.75
  • Analysis. I, Encyclopaedia of Mathematical Sciences, vol. 13, Springer-Verlag, Berlin, 1989. Integral representations and asymptotic methods; A translation of Sovremennye problemy matematiki. Fundamental′nye napravleniya, Tom 13, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986 [ MR0899751 (88c:00008)]; Translation by D. Newton; Translation edited by R. V. Gamkrelidze. MR 1042759, DOI 10.1007/978-3-642-61310-4
  • I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
  • I. M. Gel′fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, Generalized Functions, vol. 6, Academic Press, Inc., Boston, MA, 1990. Translated from the Russian by K. A. Hirsch; Reprint of the 1969 edition. MR 1071179
  • A. Good, Cusp forms and eigenfunctions of the Laplacian, Math. Ann. 255 (1981), no. 4, 523–548. MR 618183, DOI 10.1007/BF01451932
  • Benedict H. Gross, Some applications of Gel′fand pairs to number theory, Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 2, 277–301. MR 1074028, DOI 10.1090/S0273-0979-1991-16017-9
  • Sigurdur Helgason, Groups and geometric analysis, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and spherical functions; Corrected reprint of the 1984 original. MR 1790156, DOI 10.1090/surv/083
  • Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
  • Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691, DOI 10.1090/gsm/053
  • H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $L$-functions, Geom. Funct. Anal. Special Volume (2000), 705–741. GAFA 2000 (Tel Aviv, 1999). MR 1826269, DOI 10.1007/978-3-0346-0425-3_{6}
  • Hervé Jacquet and Nan Chen, Positivity of quadratic base change $L$-functions, Bull. Soc. Math. France 129 (2001), no. 1, 33–90 (English, with English and French summaries). MR 1871978, DOI 10.24033/bsmf.2386
  • Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
  • Bernhard Krötz and Robert J. Stanton, Holomorphic extensions of representations. I. Automorphic functions, Ann. of Math. (2) 159 (2004), no. 2, 641–724. MR 2081437, DOI 10.4007/annals.2004.159.641
  • Tomio Kubota, Elementary theory of Eisenstein series, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. MR 0429749
  • N. V. Kuznetsov, Sums of Kloosterman sums and the eighth power moment of the Riemann zeta-function, Number theory and related topics (Bombay, 1988) Tata Inst. Fund. Res. Stud. Math., vol. 12, Tata Inst. Fund. Res., Bombay, 1989, pp. 57–117. MR 1441327
  • John B. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms, J. Functional Analysis 29 (1978), no. 3, 287–307. MR 512246, DOI 10.1016/0022-1236(78)90032-0
  • Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141–183 (German). MR 31519, DOI 10.1007/BF01329622
  • [MW]MW K. Martin and D. Whitehouse, Central $L$-values and toric periods for $GL(2)$, preprint (2007).
  • Yoichi Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Mathematics, vol. 127, Cambridge University Press, Cambridge, 1997. MR 1489236, DOI 10.1017/CBO9780511983399
  • [Mo2]Mo2 —, A note on the meanvalue of the zeta and $L$-functions, preprint, arXiv: math.NT/0401085.
  • A. I. Oksak, Trilinear Lorentz invariant forms, Comm. Math. Phys. 29 (1973), 189–217. MR 340478
  • Yiannis N. Petridis and Peter Sarnak, Quantum unique ergodicity for $\textrm {SL}_2(\scr O)\backslash \mathbf H^3$ and estimates for $L$-functions, J. Evol. Equ. 1 (2001), no. 3, 277–290. Dedicated to Ralph S. Phillips. MR 1861223, DOI 10.1007/PL00001371
  • Dipendra Prasad, Trilinear forms for representations of $\textrm {GL}(2)$ and local $\epsilon$-factors, Compositio Math. 75 (1990), no. 1, 1–46. MR 1059954
  • R. A. Rankin, Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions. I. The zeros of the function $\sum ^\infty _{n=1}\tau (n)/n^s$ on the line ${\mathfrak {R}}s=13/2$. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 351–372. MR 411
  • [R]R A. Reznikov, Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation theory, preprint (2004). arXiv: math.AP/0403437.
  • Peter Sarnak, Integrals of products of eigenfunctions, Internat. Math. Res. Notices 6 (1994), 251 ff., approx. 10 pp.}, issn=1073-7928, review= MR 1277052, doi=10.1155/S1073792894000280,
  • Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1–15. MR 0182610
  • Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
  • [V]V A. Venkatesh, Sparse equidistribution problems, period bounds, and subconvexity, preprint (2005). arXiv: math.NT/0506224.
  • J.-L. Waldspurger, Quelques propriétés arithmétiques de certaines formes automorphes sur $\textrm {GL}(2)$, Compositio Math. 54 (1985), no. 2, 121–171 (French). MR 783510
  • [W]W T. Watson, Thesis, Princeton, 2001.
Similar Articles
Bibliographic Information
  • Andre Reznikov
  • Affiliation: Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
  • MR Author ID: 333309
  • Email:
  • Received by editor(s): December 26, 2005
  • Published electronically: October 4, 2007
  • Additional Notes: The research for this paper was partially supported by a BSF grant, by the Minerva Foundation, by the Excellency Center “Group Theoretic Methods in the Study of Algebraic Varieties” of the Israel Science Foundation and the Emmy Noether Institute for Mathematics (the Center of Minerva Foundation of Germany). The paper was mostly written during one of the author’s visits to MPIM at Bonn. It is a pleasure to thank MPIM for its excellent working atmosphere.

  • Dedicated: To Joseph Bernstein, as a small token of gratitude.
  • © Copyright 2007 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: J. Amer. Math. Soc. 21 (2008), 439-477
  • MSC (2000): Primary 11F67, 22E45; Secondary 11F70, 11M26
  • DOI:
  • MathSciNet review: 2373356