Hausdorff dimension and conformal measures of Feigenbaum Julia sets
HTML articles powered by AMS MathViewer
- by Artur Avila and Mikhail Lyubich;
- J. Amer. Math. Soc. 21 (2008), 305-363
- DOI: https://doi.org/10.1090/S0894-0347-07-00583-8
- Published electronically: November 29, 2007
- PDF | Request permission
Abstract:
We show that contrary to anticipation suggested by the dictionary between rational maps and Kleinian groups and by the “hairiness phenomenon”, there exist many Feigenbaum Julia sets $J(f)$ whose Hausdorff dimension is strictly smaller than two. We also prove that for any Feigenbaum Julia set, the Poincaré critical exponent $\delta _{\mathrm {cr}}$ is equal to the hyperbolic dimension $\mathrm {HD}_{\mathrm {hyp}}(J(f))$. Moreover, if $\operatorname {area} J(f)=0$, then $\operatorname {HD}_{\mathrm {hyp}} (J(f))=\operatorname {HD}(J(f))$. In the stationary case, the last statement can be reversed: if $\operatorname {area} J(f)> 0$, then $\operatorname {HD}_{\mathrm {hyp}} (J(f))< 2$. We also give a new construction of conformal measures on $J(f)$ that implies that they exist for any $\delta \in [\delta _{\mathrm {cr}}, \infty )$, and analyze their scaling and dissipativity/conservativity properties.References
- [Ag]Ag I. Agol. Tameness of hyperbolic 3-manifolds. Preprint math.GT/0405568 (2004).
- Lars V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, MN, 1981. MR 725161
- Jon Aaronson, Manfred Denker, and Mariusz Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), no. 2, 495–548. MR 1107025, DOI 10.1090/S0002-9947-1993-1107025-2 [AL]AL A. Avila & M. Lyubich. Examples of Feigenbaum Julia sets with small Hausdorff dimension. In “Dynamics on the Riemann Sphere. A Bodil Branner Festschrift”, Ed. Poul G. Hjorth, Carsten Lunde Petersen, European Mathematical Society (EMS), Zürich, pp. 71-87, 2006.
- Julia A. Barnes, Conservative exact rational maps of the sphere, J. Math. Anal. Appl. 230 (1999), no. 2, 350–374. MR 1672223, DOI 10.1006/jmaa.1998.6213
- Christopher J. Bishop, Minkowski dimension and the Poincaré exponent, Michigan Math. J. 43 (1996), no. 2, 231–246. MR 1398152, DOI 10.1307/mmj/1029005460
- Christopher J. Bishop and Peter W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), no. 1, 1–39. MR 1484767, DOI 10.1007/BF02392718
- A. M. Blokh and M. Yu. Lyubich, Attractors of maps of the interval, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 427–442. MR 1102738
- Alexander Blokh and MichałMisiurewicz, Attractors for graph critical rational maps, Trans. Amer. Math. Soc. 354 (2002), no. 9, 3639–3661. MR 1911515, DOI 10.1090/S0002-9947-02-02999-9
- Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11–25. MR 556580
- H. Bruin, G. Keller, T. Nowicki, and S. van Strien, Wild Cantor attractors exist, Ann. of Math. (2) 143 (1996), no. 1, 97–130. MR 1370759, DOI 10.2307/2118654
- Xavier Buff, Fibonacci fixed point of renormalization, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1287–1317. MR 1786715, DOI 10.1017/S0143385700000705 [BC]BC X. Buff & A. Chéritat. Quadratic Julia sets with positive area. Preprint math/0605514 (2006).
- Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385–446. MR 2188131, DOI 10.1090/S0894-0347-05-00513-8
- Lennart Carleson, Peter W. Jones, and Jean-Christophe Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 1, 1–30. MR 1274760, DOI 10.1007/BF01232933
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367
- M. Denker and M. Urbański, On Sullivan’s conformal measures for rational maps of the Riemann sphere, Nonlinearity 4 (1991), no. 2, 365–384. MR 1107011
- A. È. Erëmenko and M. Yu. Lyubich, Iterations of entire functions, Dokl. Akad. Nauk SSSR 279 (1984), no. 1, 25–27 (Russian). MR 769199
- A. È. Erëmenko and M. Ju. Ljubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36 (1987), no. 3, 458–468. MR 918638, DOI 10.1112/jlms/s2-36.3.458 [GY]GY D. Gaidashev, M. Yampolski. Cylinder renormalization of Siegel disks. Preprint math/0603008 (2006). To appear in Exp. Math. [GS]GS J. Graczyk, S. Smirnov. Non-uniform hyperbolicity in complex dynamics I,II. Preprint (http://www.math.kth.se/$\sim$stas/papers/).
- Yunping Jiang, Infinitely renormalizable quadratic polynomials, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5077–5091. MR 1675198, DOI 10.1090/S0002-9947-00-02514-9 [K]Ka J. Kahn. A priori bounds for some infinitely renormalizable quadratics: I. Bounded primitive combinatorics. Preprint IMS at Stony Brook, # 2006/5.
- Vadim A. Kaimanovich and Mikhail Lyubich, Conformal and harmonic measures on laminations associated with rational maps, Mem. Amer. Math. Soc. 173 (2005), no. 820, vi+119. MR 2111096, DOI 10.1090/memo/0820
- Boguslawa Karpińska, Hausdorff dimension of the hairs without endpoints for $\lambda \exp z$, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 11, 1039–1044 (English, with English and French summaries). MR 1696203, DOI 10.1016/S0764-4442(99)80321-8
- Gerhard Keller and Tomasz Nowicki, Fibonacci maps re(al)visited, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 99–120. MR 1314971, DOI 10.1017/S0143385700008269
- Genadi Levin and Grzegorz Świa̧tek, Hausdorff dimension of Julia sets of Feigenbaum polynomials with high criticality, Comm. Math. Phys. 258 (2005), no. 1, 135–148. MR 2166843, DOI 10.1007/s00220-005-1332-7
- M. Yu. Lyubich, Typical behavior of trajectories of the rational mapping of a sphere, Dokl. Akad. Nauk SSSR 268 (1983), no. 1, 29–32 (Russian). MR 687919
- M. Yu. Lyubich, The measurable dynamics of the exponential, Sibirsk. Mat. Zh. 28 (1987), no. 5, 111–127 (Russian). MR 924986 [L3]measure M. Lyubich. On the Lebesgue measure of the Julia set of a quadratic polynomial. Preprint IMS at Stony Brook, # 1991/10.
- Mikhail Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2) 140 (1994), no. 2, 347–404. MR 1298717, DOI 10.2307/2118604
- Mikhail Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997), no. 2, 185–247, 247–297. MR 1459261, DOI 10.1007/BF02392694
- Mikhail Lyubich, Dynamics of quadratic polynomials. III. Parapuzzle and SBR measures, Astérisque 261 (2000), xii–xiii, 173–200 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755441
- Mikhail Lyubich, How big is the set of infinitely renormalizable quadratics?, Voronezh Winter Mathematical Schools, Amer. Math. Soc. Transl. Ser. 2, vol. 184, Amer. Math. Soc., Providence, RI, 1998, pp. 131–143. MR 1729930, DOI 10.1090/trans2/184/09
- Mikhail Lyubich, Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture, Ann. of Math. (2) 149 (1999), no. 2, 319–420. MR 1689333, DOI 10.2307/120968
- Mikhail Lyubich and John Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc. 6 (1993), no. 2, 425–457. MR 1182670, DOI 10.1090/S0894-0347-1993-1182670-0
- Mikhail Lyubich and Yair Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997), no. 1, 17–94. MR 1601430
- Marco Martens, Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 331–349. MR 1279474, DOI 10.1017/S0143385700007902
- Marco Martens, The periodic points of renormalization, Ann. of Math. (2) 147 (1998), no. 3, 543–584. MR 1637651, DOI 10.2307/120959
- Curt McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), no. 1, 329–342. MR 871679, DOI 10.1090/S0002-9947-1987-0871679-3
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347, DOI 10.1515/9781400865178
- Curtis T. McMullen, Self-similarity of Siegel disks and Hausdorff dimension of Julia sets, Acta Math. 180 (1998), no. 2, 247–292. MR 1638776, DOI 10.1007/BF02392901
- Curtis T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), no. 4, 535–593. MR 1789177, DOI 10.1007/s000140050140
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- Volker Mayer and Mariusz Urbański, Fractal measures for meromorphic functions of finite order, Dyn. Syst. 22 (2007), no. 2, 169–178. MR 2327991, DOI 10.1080/14689360600893736
- Peter J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, vol. 143, Cambridge University Press, Cambridge, 1989. MR 1041575, DOI 10.1017/CBO9780511600678
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241–273. MR 450547, DOI 10.1007/BF02392046
- Carsten Lunde Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation, Acta Math. 177 (1996), no. 2, 163–224. MR 1440932, DOI 10.1007/BF02392621
- Eduardo A. Prado, Ergodicity of conformal measures for unimodal polynomials, Conform. Geom. Dyn. 2 (1998), 29–44. MR 1613051, DOI 10.1090/S1088-4173-98-00019-8
- Feliks Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), no. 1, 309–317. MR 1186141, DOI 10.1090/S0002-9939-1993-1186141-9
- Feliks Przytycki, On measure and Hausdorff dimension of Julia sets of holomorphic Collet-Eckmann maps, International Conference on Dynamical Systems (Montevideo, 1995) Pitman Res. Notes Math. Ser., vol. 362, Longman, Harlow, 1996, pp. 167–181. MR 1460803
- Feliks Przytycki and Steffen Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math. 155 (1998), no. 2, 189–199. MR 1606527 [PU]PU F. Przytycki & M. Urbański. Fractals in the plane – the ergodic theory methods. Cambridge Univ. Press, to appear.
- Mary Rees, The exponential map is not recurrent, Math. Z. 191 (1986), no. 4, 593–598. MR 832817, DOI 10.1007/BF01162349 [Sc]Sc D. Schleicher. The structure of the Mandelbrot set. Preprint 1995.
- Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
- Weixiao Shen, Decay of geometry for unimodal maps: an elementary proof, Ann. of Math. (2) 163 (2006), no. 2, 383–404. MR 2199221, DOI 10.4007/annals.2006.163.383
- Mitsuhiro Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2) 147 (1998), no. 2, 225–267. MR 1626737, DOI 10.2307/121009
- Mitsuhiro Shishikura, Topological, geometric and complex analytic properties of Julia sets, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 886–895. MR 1403988
- Ja. G. Sinaĭ, Markov partitions and U-diffeomorphisms, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 64–89 (Russian). MR 233038
- Daniel Smania, Puzzle geometry and rigidity: the Fibonacci cycle is hyperbolic, J. Amer. Math. Soc. 20 (2007), no. 3, 629–673. MR 2291915, DOI 10.1090/S0894-0347-07-00550-4
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586
- Dennis Sullivan, Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and Hausdorff dimension two, Geometry Symposium, Utrecht 1980 (Utrecht, 1980) Lecture Notes in Math., vol. 894, Springer, Berlin-New York, 1981, pp. 127–144. MR 655423
- Dennis Sullivan, Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR 730296, DOI 10.1007/BFb0061443
- Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277. MR 766265, DOI 10.1007/BF02392379
- Dennis Sullivan, Bounds, quadratic differentials, and renormalization conjectures, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 417–466. MR 1184622 [Th]Th W. Thurston. The geometry and topology of 3-manifolds. Princeton University Lecture Notes, 1982.
- Pekka Tukia, The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984), no. 1-2, 127–140. MR 736215, DOI 10.1007/BF02392194
- Mariusz Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 391–414. MR 1279476, DOI 10.1017/S0143385700007926
- Mariusz Urbański, Geometry and ergodic theory of conformal non-recurrent dynamics, Ergodic Theory Dynam. Systems 17 (1997), no. 6, 1449–1476. MR 1488329, DOI 10.1017/S014338579708646X
- Mariusz Urbański and Anna Zdunik, The finer geometry and dynamics of the hyperbolic exponential family, Michigan Math. J. 51 (2003), no. 2, 227–250. MR 1992945, DOI 10.1307/mmj/1060013195 [Y]Y B. Yarrington. Local connectivity and Lebesgue measure of polynomial Julia sets. Thesis, Stony Brook, 1995.
- Anna Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), no. 3, 627–649. MR 1032883, DOI 10.1007/BF01234434
Bibliographic Information
- Artur Avila
- Affiliation: CNRS UMR 7599, Laboratoire de Probabilités et Modèles aléatoires, Université Pierre et Marie Curie–Boîte courrier 188, 75252–Paris Cedex 05, France
- Email: artur@ccr.jussieu.fr
- Mikhail Lyubich
- Affiliation: Department of Mathematics, University of Toronto, Ontario, Canada M5S 3G3
- Address at time of publication: Mathematics Department and IMS, SUNY Stony Brook, Stony Brook, New York 11794
- MR Author ID: 189401
- Email: misha@math.toronto.edu, mlyubich@math.sunysb.edu
- Received by editor(s): September 20, 2004
- Published electronically: November 29, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 305-363
- MSC (2000): Primary 37F25; Secondary 37F35
- DOI: https://doi.org/10.1090/S0894-0347-07-00583-8
- MathSciNet review: 2373353