Quantum generalization of the Horn conjecture
HTML articles powered by AMS MathViewer
- by Prakash Belkale;
- J. Amer. Math. Soc. 21 (2008), 365-408
- DOI: https://doi.org/10.1090/S0894-0347-07-00584-X
- Published electronically: October 25, 2007
- PDF | Request permission
Abstract:
The following results are presented in this paper: (1) a quantum (multiplicative) generalization of the Horn conjecture which gives a recursive characterization of the possible eigenvalues of a product of unitary matrices, (2) the saturation conjecture for the fusion structure coefficients for SL$(n)$, (3) transversality statements for quantum Schubert calculus in any characteristic for the ordinary Grassmannians, (4) determination of the smallest power of $q$ in an arbitrary (small quantum) product of Schubert varieties in an ordinary Grassmannian.References
- agni S. Agnihotri, Quantum cohomology and the verlinde algebra, Ph.D. thesis, University of Oxford, 1995.
- S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett. 5 (1998), no. 6, 817–836. MR 1671192, DOI 10.4310/MRL.1998.v5.n6.a10
- Arnaud Beauville, Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 75–96. MR 1360497
- Prakash Belkale, Local systems on $\Bbb P^1-S$ for $S$ a finite set, Compositio Math. 129 (2001), no. 1, 67–86. MR 1856023, DOI 10.1023/A:1013195625868
- Prakash Belkale, Transformation formulas in quantum cohomology, Compos. Math. 140 (2004), no. 3, 778–792. MR 2041780, DOI 10.1112/S0010437X03000241
- Prakash Belkale, Geometric proofs of Horn and saturation conjectures, J. Algebraic Geom. 15 (2006), no. 1, 133–173. MR 2177198, DOI 10.1090/S1056-3911-05-00420-0
- Aaron Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289–305. MR 1454400, DOI 10.1006/aima.1997.1627
- Indranil Biswas, A criterion for the existence of a parabolic stable bundle of rank two over the projective line, Internat. J. Math. 9 (1998), no. 5, 523–533. MR 1644048, DOI 10.1142/S0129167X98000233
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534
- W. Fulton and C. Woodward, On the quantum product of Schubert classes, J. Algebraic Geom. 13 (2004), no. 4, 641–661. MR 2072765, DOI 10.1090/S1056-3911-04-00365-0
- William Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209–249. MR 1754641, DOI 10.1090/S0273-0979-00-00865-X
- William Fulton, Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients, Linear Algebra Appl. 319 (2000), no. 1-3, 23–36. Special Issue: Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Spectral Problem (Coimbra, 1999). MR 1799622, DOI 10.1016/S0024-3795(00)00218-4
- Doron Gepner, Fusion rings and geometry, Comm. Math. Phys. 141 (1991), no. 2, 381–411. MR 1133272 gepner2 —, Foundation of rational conformal field theory 1, hep-th/9211100, 1992.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157
- Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225–241. MR 140521
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- Alexander A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419–445. MR 1654578, DOI 10.1007/s000290050037
- Allen Knutson and Terence Tao, The honeycomb model of $\textrm {GL}_n(\textbf {C})$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055–1090. MR 1671451, DOI 10.1090/S0894-0347-99-00299-4
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry [ MR1291244 (95i:14049)], Mirror symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, Amer. Math. Soc., Providence, RI, 1997, pp. 607–653. MR 1416351, DOI 10.1090/amsip/001/23
- J. Le Potier, Lectures on vector bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997. Translated by A. Maciocia. MR 1428426
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), no. 3, 205–239. MR 575939, DOI 10.1007/BF01420526
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, NJ, 1966. With a section by G. M. Bergman. MR 209285
- Christian Pauly, Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J. 84 (1996), no. 1, 217–235 (French). MR 1394754, DOI 10.1215/S0012-7094-96-08408-2
- Alexander Postnikov, Affine approach to quantum Schubert calculus, Duke Math. J. 128 (2005), no. 3, 473–509. MR 2145741, DOI 10.1215/S0012-7094-04-12832-5
- Frank Sottile, Pieri’s formula via explicit rational equivalence, Canad. J. Math. 49 (1997), no. 6, 1281–1298. MR 1611668, DOI 10.4153/CJM-1997-063-7
- Frank Sottile, Real rational curves in Grassmannians, J. Amer. Math. Soc. 13 (2000), no. 2, 333–341. MR 1706484, DOI 10.1090/S0894-0347-99-00323-9
- Frank Sottile, Elementary transversality in the Schubert calculus in any characteristic, Michigan Math. J. 51 (2003), no. 3, 651–666. MR 2021013, DOI 10.1307/mmj/1070919565
- Ravi Vakil, Schubert induction, Ann. of Math. (2) 164 (2006), no. 2, 489–512. MR 2247966, DOI 10.4007/annals.2006.164.489
- Edward Witten, The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 357–422. MR 1358625
- Alexander Yong, Degree bounds in quantum Schubert calculus, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2649–2655. MR 1974319, DOI 10.1090/S0002-9939-03-06850-3
Bibliographic Information
- Prakash Belkale
- Affiliation: Department of Mathematics, University of North Carolina–Chapel Hill, CB #3250, Phillips Hall, Chapel Hill, North Carolina 27599
- MR Author ID: 684040
- Email: belkale@email.unc.edu
- Received by editor(s): July 22, 2005
- Published electronically: October 25, 2007
- Additional Notes: The author was partially supported by NSF grant DMS-0300356.
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 365-408
- MSC (2000): Primary 14N35, 14D20
- DOI: https://doi.org/10.1090/S0894-0347-07-00584-X
- MathSciNet review: 2373354