The dynamics of pseudographs in convex Hamiltonian systems
HTML articles powered by AMS MathViewer
- by Patrick Bernard;
- J. Amer. Math. Soc. 21 (2008), 615-669
- DOI: https://doi.org/10.1090/S0894-0347-08-00591-2
- Published electronically: March 31, 2008
- PDF | Request permission
Abstract:
We study the evolution, under convex Hamiltonian flows on cotangent bundles of compact manifolds, of certain distinguished subsets of the phase space. These subsets are generalizations of Lagrangian graphs, which we call pseudographs. They emerge in a natural way from Fathi’s weak KAM theory. By this method, we find various orbits which connect prescribed regions of the phase space. Our study was inspired by works of John Mather. As an application, we obtain the existence of diffusion in a large class of a priori unstable systems and provide a solution to the large gap problem. We hope that our method will have applications to more examples.
Résumé. Nous étudions l’évolution, par le flot d’un Hamiltonien convexe sur une variété compacte, de certains ensembles de l’espace des phases. Nous appelons pseudographes ces ensembles, qui sont des généralisations de graphes Lagrangiens apparaissant de manière naturelle dans la théorie KAM faible de Fathi. Par cette méthode, nous trouvons diverses orbites qui joignent des domaines donnés de l’espace des phases. Notre étude s’inspire de travaux de John Mather. Nous obtenons l’existence de diffusion dans une large classe de systèmes à priori instables comme application de cette méthode, qui permet de résoudre le probleme de l’écart entre les tores invariants. Nous espérons que la méthode s’appliquera à d’autres exemples.
References
- V. I. Arnol′d, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR 156 (1964), 9–12 (Russian). MR 163026
- Patrick Bernard, Homoclinic orbits to invariant sets of quasi-integrable exact maps, Ergodic Theory Dynam. Systems 20 (2000), no. 6, 1583–1601. MR 1804946, DOI 10.1017/S0143385700000870
- Patrick Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 5, 1533–1568 (English, with English and French summaries). MR 1935556, DOI 10.5802/aif.1924
- Patrick Bernard, The action spectrum near positive definite invariant tori, Bull. Soc. Math. France 131 (2003), no. 4, 603–616 (English, with English and French summaries). MR 2044497, DOI 10.24033/bsmf.2457 BG P. Bernard, G. Contreras, Generic properties of families of Lagrangian systems. Ann. of Math., to appear.
- Massimiliano Berti, Luca Biasco, and Philippe Bolle, Drift in phase space: a new variational mechanism with optimal diffusion time, J. Math. Pures Appl. (9) 82 (2003), no. 6, 613–664 (English, with English and French summaries). MR 1996776, DOI 10.1016/S0021-7824(03)00032-1
- Ugo Bessi, An approach to Arnol′d’s diffusion through the calculus of variations, Nonlinear Anal. 26 (1996), no. 6, 1115–1135. MR 1375654, DOI 10.1016/0362-546X(94)00270-R
- S. Bolotin and D. Treschev, Unbounded growth of energy in nonautonomous Hamiltonian systems, Nonlinearity 12 (1999), no. 2, 365–388. MR 1677779, DOI 10.1088/0951-7715/12/2/013
- Chong-Qing Cheng and Jun Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom. 67 (2004), no. 3, 457–517. MR 2153027 Cheng2 C.-Q. Cheng, J. Yan, Arnold diffusion in Hamiltonian systems: the a priori unstable case, préprint.
- Gonzalo Contreras and Gabriel P. Paternain, Connecting orbits between static classes for generic Lagrangian systems, Topology 41 (2002), no. 4, 645–666. MR 1905833, DOI 10.1016/S0040-9383(00)00042-2
- Gonzalo Contreras, Jorge Delgado, and Renato Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits. II, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 155–196. MR 1479500, DOI 10.1007/BF01233390
- Amadeu Delshams, Rafael de la Llave, and Tere M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: announcement of results, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 125–134. MR 2029474, DOI 10.1090/S1079-6762-03-00121-5
- Weinan E, Aubry-Mather theory and periodic solutions of the forced Burgers equation, Comm. Pure Appl. Math. 52 (1999), no. 7, 811–828. MR 1682812, DOI 10.1002/(SICI)1097-0312(199907)52:7<811::AID-CPA2>3.0.CO;2-D Fathibook A. Fathi, Book in preparation.
- Albert Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 1043–1046 (French, with English and French summaries). MR 1451248, DOI 10.1016/S0764-4442(97)87883-4
- Albert Fathi, Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 6, 649–652 (French, with English and French summaries). MR 1473840, DOI 10.1016/S0764-4442(97)84777-5
- Albert Fathi, Orbites hétéroclines et ensemble de Peierls, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 10, 1213–1216 (French, with English and French summaries). MR 1650195, DOI 10.1016/S0764-4442(98)80230-9
- V. Kaloshin, Geometric proofs of Mather’s connecting and accelerating theorems, Topics in dynamics and ergodic theory, London Math. Soc. Lecture Note Ser., vol. 310, Cambridge Univ. Press, Cambridge, 2003, pp. 81–106. MR 2052276, DOI 10.1017/CBO9780511546716.007
- Y. Katznelson and D. S. Ornstein, Twist maps and Aubry-Mather sets, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 343–357. MR 1476996, DOI 10.1090/conm/211/02829
- Pierre Lochak, Arnold diffusion; a compendium of remarks and questions, Hamiltonian systems with three or more degrees of freedom (S’Agaró, 1995) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 533, Kluwer Acad. Publ., Dordrecht, 1999, pp. 168–183. MR 1720892
- Jean-Pierre Marco and David Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. 96 (2002), 199–275 (2003). MR 1986314, DOI 10.1007/s10240-003-0011-5
- John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), no. 2, 169–207. MR 1109661, DOI 10.1007/BF02571383
- John N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 5, 1349–1386 (English, with English and French summaries). MR 1275203, DOI 10.5802/aif.1377 Matherconjecture J. N. Mather, Variational construction of trajectories for time-periodic Lagrangian systems on the two torus, unpublished manuscript.
- Dzh. N. Mèzer, Arnol′d diffusion. I. Announcement of results, Sovrem. Mat. Fundam. Napravl. 2 (2003), 116–130 (Russian, with Russian summary); English transl., J. Math. Sci. (N.Y.) 124 (2004), no. 5, 5275–5289. MR 2129140, DOI 10.1023/B:JOTH.0000047353.78307.09
- Ricardo Mañé, Lagrangian flows: the dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 141–153. MR 1479499, DOI 10.1007/BF01233389
- Karl Friedrich Siburg, The principle of least action in geometry and dynamics, Lecture Notes in Mathematics, vol. 1844, Springer-Verlag, Berlin, 2004. MR 2076302, DOI 10.1007/b97327
- D. Treschev, Evolution of slow variables in a priori unstable Hamiltonian systems, Nonlinearity 17 (2004), no. 5, 1803–1841. MR 2086152, DOI 10.1088/0951-7715/17/5/014
- Zhihong Xia, Arnold diffusion: a variational construction, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 867–877. MR 1648133 Xia Z. Xia, Arnold Diffusion and instabilities in Hamiltonian dynamics, preprint.
Bibliographic Information
- Patrick Bernard
- Affiliation: Université Paris-Dauphine, CEREMADE, UMR CNRS 7534, Place Marechal Lattre Tassigny, 75775 Paris, Cedex 16, France
- MR Author ID: 609775
- Email: patrick.bernard@ceremade.dauphine.fr
- Received by editor(s): October 4, 2004
- Published electronically: March 31, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 615-669
- MSC (2000): Primary 37J40, 37J50
- DOI: https://doi.org/10.1090/S0894-0347-08-00591-2
- MathSciNet review: 2393423