On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras
HTML articles powered by AMS MathViewer
- by Shrawan Kumar;
- J. Amer. Math. Soc. 21 (2008), 797-808
- DOI: https://doi.org/10.1090/S0894-0347-08-00599-7
- Published electronically: March 14, 2008
- PDF | Request permission
Abstract:
We prove a part of the Cachazo-Douglas-Seiberg-Witten conjecture uniformly for any simple Lie algebra $\mathfrak {g}$. The main ingredients in the proof are: Garland’s result on the Lie algebra cohomology of $\hat {\mathfrak {u}} := \mathfrak {g}\otimes t\mathbb {C}[t]$; Kostant’s result on the ‘diagonal’ cohomolgy of $\hat {\mathfrak {u}}$ and its connection with abelian ideals in a Borel subalgebra of $\mathfrak {g}$; and a certain deformation of the singular cohomology of the infinite Grassmannian introduced by Belkale-Kumar.References
- Prakash Belkale and Shrawan Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), no. 1, 185–228. MR 2242637, DOI 10.1007/s00222-006-0516-x
- Raoul Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35–61. MR 102803
- Freddy Cachazo, Michael R. Douglas, Nathan Seiberg, and Edward Witten, Chiral rings and anomalies in supersymmetric gauge theory, J. High Energy Phys. 12 (2002), 071, 56. MR 1960462, DOI 10.1088/1126-6708/2002/12/071
- Shiing Shen Chern and James Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974), 48–69. MR 353327, DOI 10.2307/1971013 [E]E P. Etingof, On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras, II, Preprint (2004). [EK]EK P. Etingof and V. Kac, On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras, Preprint (2003).
- Howard Garland and M. S. Raghunathan, A Bruhat decomposition for the loop space of a compact group: a new approach to results of Bott, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 12, 4716–4717. MR 417333, DOI 10.1073/pnas.72.12.4716
- Bertram Kostant, Eigenvalues of the Laplacian and commutative Lie subalgebras, Topology 3 (1965), no. suppl, suppl. 2, 147–159 (German). MR 167567, DOI 10.1016/0040-9383(65)90073-X
- Bertram Kostant, On $\bigwedge \mathfrak {g}$ for a semisimple Lie algebra $\mathfrak {g}$, as an equivariant module over the symmetric algebra $S({\mathfrak {g}})$, Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997), Adv. Stud. Pure Math., vol. 26, Math. Soc. Japan, Tokyo, 2000, pp. 129–144. MR 1770720, DOI 10.2969/aspm/02610129
- Bertram Kostant, Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra, Invent. Math. 158 (2004), no. 1, 181–226. MR 2090363, DOI 10.1007/s00222-004-0370-7
- Shrawan Kumar, Geometry of Schubert cells and cohomology of Kac-Moody Lie-algebras, J. Differential Geom. 20 (1984), no. 2, 389–431. MR 788286
- Shrawan Kumar, Rational homotopy theory of flag varieties associated to Kac-Moody groups, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) Math. Sci. Res. Inst. Publ., vol. 4, Springer, New York, 1985, pp. 233–273. MR 823322, DOI 10.1007/978-1-4612-1104-4_{9}
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- Ruedi Suter, Abelian ideals in a Borel subalgebra of a complex simple Lie algebra, Invent. Math. 156 (2004), no. 1, 175–221. MR 2047661, DOI 10.1007/s00222-003-0337-0
- E. Witten, Chiral ring of $\textrm {Sp}(N)$ and $\textrm {SO}(N)$ supersymmetric gauge theory in four dimensions, Chinese Ann. Math. Ser. B 24 (2003), no. 4, 403–414. MR 2024979, DOI 10.1142/S0252959903000402
Bibliographic Information
- Shrawan Kumar
- Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599–3250
- MR Author ID: 219351
- Email: shrawan@email.unc.edu
- Received by editor(s): March 15, 2006
- Published electronically: March 14, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 797-808
- MSC (2000): Primary 22E70, 22E67
- DOI: https://doi.org/10.1090/S0894-0347-08-00599-7
- MathSciNet review: 2393427