On the superrigidity of malleable actions with spectral gap
HTML articles powered by AMS MathViewer
- by Sorin Popa;
- J. Amer. Math. Soc. 21 (2008), 981-1000
- DOI: https://doi.org/10.1090/S0894-0347-07-00578-4
- Published electronically: September 26, 2007
- PDF | Request permission
Abstract:
We prove that if a countable group $\Gamma$ contains infinite commuting subgroups $H, H’\subset \Gamma$ with $H$ non-amenable and $H’$ “weakly normal” in $\Gamma$, then any measure preserving $\Gamma$-action on a probability space which satisfies certain malleability, spectral gap and weak mixing conditions (e.g. a Bernoulli $\Gamma$-action) is cocycle superrigid. If in addition $H’$ can be taken non-virtually abelian and $\Gamma \curvearrowright X$ is an arbitrary free ergodic action while $\Lambda \curvearrowright Y=\mathbb {T}^{\Lambda }$ is a Bernoulli action of an arbitrary infinite conjugacy class group, then any isomorphism of the associated II$_{1}$ factors $L^{\infty }X \rtimes \Gamma \simeq L^{\infty }Y \rtimes \Lambda$ comes from a conjugacy of the actions.References
- Uri Bader and Yehuda Shalom, Factor and normal subgroup theorems for lattices in products of groups, Invent. Math. 163 (2006), no. 2, 415–454. MR 2207022, DOI 10.1007/s00222-005-0469-5
- Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, and Alain Valette, Groups with the Haagerup property, Progress in Mathematics, vol. 197, Birkhäuser Verlag, Basel, 2001. Gromov’s a-T-menability. MR 1852148, DOI 10.1007/978-3-0348-8237-8
- Erik Christensen, Subalgebras of a finite algebra, Math. Ann. 243 (1979), no. 1, 17–29. MR 543091, DOI 10.1007/BF01420203
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- Alain Connes, Sur la classification des facteurs de type $\textrm {II}$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 1, Aii, A13–A15 (French, with English summary). MR 377534
- A. Connes, A factor of type $\textrm {II}_{1}$ with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151–153. MR 587372
- A. Connes, Classification des facteurs, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 43–109 (French). MR 679497
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- A. Connes and V. Jones, A $\textrm {II}_{1}$ factor with two nonconjugate Cartan subalgebras, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 211–212. MR 640947, DOI 10.1090/S0273-0979-1982-14981-3
- A. Connes and V. Jones, Property $T$ for von Neumann algebras, Bull. London Math. Soc. 17 (1985), no. 1, 57–62. MR 766450, DOI 10.1112/blms/17.1.57
- Klaus Schmidt, Asymptotically invariant sequences and an action of $\textrm {SL}(2,\,\textbf {Z})$ on the $2$-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, DOI 10.1007/BF02760961
- H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551–576. MR 158048, DOI 10.2307/2373108
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Alex Furman, Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), no. 3, 1083–1108. MR 1740985, DOI 10.2307/121063 [Fu2]Fu2 A. Furman: On Popa’s Cocycle Superrigidity Theorem, math.DS/0608364, preprint 2006.
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- Damien Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000), no. 1, 41–98 (French, with English summary). MR 1728876, DOI 10.1007/s002229900019
- Damien Gaboriau, Invariants $l^2$ de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 93–150 (French). MR 1953191, DOI 10.1007/s102400200002
- Damien Gaboriau and Sorin Popa, An uncountable family of nonorbit equivalent actions of $\Bbb F_n$, J. Amer. Math. Soc. 18 (2005), no. 3, 547–559. MR 2138136, DOI 10.1090/S0894-0347-05-00480-7
- Uffe Haagerup, An example of a nonnuclear $C^{\ast }$-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279–293. MR 520930, DOI 10.1007/BF01410082
- Greg Hjorth, A converse to Dye’s theorem, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3083–3103. MR 2135736, DOI 10.1090/S0002-9947-04-03672-4
- Greg Hjorth and Alexander S. Kechris, Rigidity theorems for actions of product groups and countable Borel equivalence relations, Mem. Amer. Math. Soc. 177 (2005), no. 833, viii+109. MR 2155451, DOI 10.1090/memo/0833 [I1]I1 A. Ioana: A relative version of Connes $\chi (M)$ invariant, Erg. Theory and Dyn. Systems 27 (2007), 1199–1213. [I2]I2 A. Ioana: Rigidity results for wreath product II$_{1}$ factors, math.OA/0606574. [I3]I3 A. Ioana: Existence of uncountable families of orbit inequivalent actions for groups containing $\mathbb {F}_{2}$, preprint 2007. [IPeP]IPeP A. Ioana, J. Peterson, S. Popa: Amalgamated free products of w-rigid factors and calculation of their symmetry groups, math.OA/0505589, to appear in Acta Math.
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 209390
- Dusa McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443–461. MR 281018, DOI 10.1112/plms/s3-21.3.443
- Nicolas Monod, Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc. 19 (2006), no. 4, 781–814. MR 2219304, DOI 10.1090/S0894-0347-06-00525-X
- Nicolas Monod and Yehuda Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. of Math. (2) 164 (2006), no. 3, 825–878. MR 2259246, DOI 10.4007/annals.2006.164.825
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164. MR 551753, DOI 10.1090/S0273-0979-1980-14702-3
- Narutaka Ozawa, Solid von Neumann algebras, Acta Math. 192 (2004), no. 1, 111–117. MR 2079600, DOI 10.1007/BF02441087
- Narutaka Ozawa, A Kurosh-type theorem for type $\rm II_1$ factors, Int. Math. Res. Not. , posted on (2006), Art. ID 97560, 21. MR 2211141, DOI 10.1155/IMRN/2006/97560
- Narutaka Ozawa and Sorin Popa, Some prime factorization results for type $\textrm {II}_1$ factors, Invent. Math. 156 (2004), no. 2, 223–234. MR 2052608, DOI 10.1007/s00222-003-0338-z [Pe]Pe J. Peterson, $L^{2}$-rigidity in von Neumann algebras, math.OA/0605033. [P1]P1 S. Popa: Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups, math.GR/0512646, to appear in Invent. Math. DOI: 10.1007/s00 222-007-0063-0.
- Sorin Popa, Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions, J. Inst. Math. Jussieu 5 (2006), no. 2, 309–332. MR 2225044, DOI 10.1017/S1474748006000016
- Sorin Popa, Some rigidity results for non-commutative Bernoulli shifts, J. Funct. Anal. 230 (2006), no. 2, 273–328. MR 2186215, DOI 10.1016/j.jfa.2005.06.017
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. I, Invent. Math. 165 (2006), no. 2, 369–408. MR 2231961, DOI 10.1007/s00222-006-0501-4
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. II, Invent. Math. 165 (2006), no. 2, 409–451. MR 2231962, DOI 10.1007/s00222-006-0502-3 [P6]P6 S. Popa: Deformation and rigidity in the study of II$_{1}$ factors, Mini-Course at College de France, Nov. 2004. [P7]P7 S. Popa: On Ozawa’s property for free group factors, math.OA/0607561, Intern. Math. Res. Notices, Vol. 2007, rnm036, 10 pages, DOI: 10.1093/imrn/rnm036, June 22, 2007.
- Sorin Popa, On a class of type $\textrm {II}_1$ factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), no. 3, 809–899. MR 2215135, DOI 10.4007/annals.2006.163.809 [P9]P9 S. Popa: Deformation and rigidity for group actions and von Neumann algebras, in “Proceedings of the International Congress of Mathematicians” (Madrid 2006), Volume I, EMS Publishing House, Zurich 2006/2007, pp. 445–479.
- Sorin Popa and Roman Sasyk, On the cohomology of Bernoulli actions, Ergodic Theory Dynam. Systems 27 (2007), no. 1, 241–251. MR 2297095, DOI 10.1017/S0143385706000502 [PV]PV S. Popa, S. Vaes: Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups, math.OA/0605456, to appear in Advances in Math.
- Robert T. Powers and Erling Størmer, Free states of the canonical anticommutation relations, Comm. Math. Phys. 16 (1970), 1–33. MR 269230, DOI 10.1007/BF01645492
- Klaus Schmidt, Asymptotically invariant sequences and an action of $\textrm {SL}(2,\,\textbf {Z})$ on the $2$-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, DOI 10.1007/BF02760961
- Yehuda Shalom, Measurable group theory, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 391–423. MR 2185757
- I. M. Singer, Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117–133. MR 66567, DOI 10.2307/2372424 [V]V S. Vaes: Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa) Séminaire Bourbaki, exposéé 961. Astérisque (to appear).
- Robert J. Zimmer, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. of Math. (2) 112 (1980), no. 3, 511–529. MR 595205, DOI 10.2307/1971090
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
- Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 409770
Bibliographic Information
- Sorin Popa
- Affiliation: Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095-155505
- MR Author ID: 141080
- Email: popa@math.ucla.edu
- Received by editor(s): October 24, 2006
- Published electronically: September 26, 2007
- Additional Notes: Research was supported in part by NSF Grant 0601082.
- © Copyright 2007 American Mathematical Society
- Journal: J. Amer. Math. Soc. 21 (2008), 981-1000
- MSC (2000): Primary 46L35; Secondary 37A20, 22D25, 28D15
- DOI: https://doi.org/10.1090/S0894-0347-07-00578-4
- MathSciNet review: 2425177