Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system
HTML articles powered by AMS MathViewer
- by Mohammed Lemou, Florian Méhats and Pierre Raphaël;
- J. Amer. Math. Soc. 21 (2008), 1019-1063
- DOI: https://doi.org/10.1090/S0894-0347-07-00579-6
- Published electronically: November 29, 2007
- PDF | Request permission
Abstract:
The three dimensional gravitational Vlasov-Poisson system $\partial _tf+v\cdot \nabla _x f-E_f\cdot \nabla _vf=0$, where $E_f(x)=\nabla _x \phi _f(x)$, $\Delta _x\phi _f=\rho _f(x)$, $\rho _f(x)=\int _{\mathbb {R}^N} f(x,v)dv$, describes the mechanical state of a stellar system subject to its own gravity. Smooth initial data yield unique global in time solutions from a celebrated result by Pfaffelmoser. There exists a hierarchy of physical models which aim at taking into account further relativistic effects. The simplest one is the three dimensional relativistic gravitational Vlasov-Poisson system $\partial _tf+\frac {v}{\sqrt {1+|v|^2}}\cdot \nabla _x f-E_f\cdot \nabla _vf=0$ which we study here. A striking feature as observed by Glassey and Schaeffer is that this system now admits finite blow up solutions. Nevertheless, the existence argument is purely obstructive and provides no insight into the description of the singularity formation. We exhibit in this paper a family of finite time blow up self-similar solutions and prove that their blow up dynamic is stable with respect to radially symmetric perturbations. Our analysis applies to the four dimensional gravitational Vlasov-Poisson system as well.References
- Jürgen Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations 25 (1977), no. 3, 342–364. MR 487082, DOI 10.1016/0022-0396(77)90049-3
- J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 (1986), no. 2, 159–183. MR 823117, DOI 10.1007/BF00279958 binney Binney, J.; Tremaine, S., Galactic Dynamics, Princeton University Press, 1987.
- François Bouchut, François Golse, and Mario Pulvirenti, Kinetic equations and asymptotic theory, Series in Applied Mathematics (Paris), vol. 4, Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 2000. Edited and with a foreword by Benoît Perthame and Laurent Desvillettes. MR 2065070
- Jean Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 197–215 (1998). Dedicated to Ennio De Giorgi. MR 1655515
- Yvonne Choquet-Bruhat and Norbert Noutchegueme, Solutions globales du système de Yang-Mills-Vlasov (masse nulle), C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 12, 785–788 (French, with English summary). MR 1082633
- Raphaël Côte, Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior, J. Funct. Anal. 241 (2006), no. 1, 143–211. MR 2264249, DOI 10.1016/j.jfa.2006.04.007
- Mihalis Dafermos, A note on the collapse of small data self-gravitating massless collisionless matter, J. Hyperbolic Differ. Equ. 3 (2006), no. 4, 589–598. MR 2289606, DOI 10.1142/S0219891606000926
- Mihalis Dafermos and Alan D. Rendall, An extension principle for the Einstein-Vlasov system in spherical symmetry, Ann. Henri Poincaré 6 (2005), no. 6, 1137–1155. MR 2189379, DOI 10.1007/s00023-005-0235-7
- P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci. 8 (1986), no. 4, 533–558. MR 870991, DOI 10.1002/mma.1670080135
- R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), no. 6, 729–757. MR 1003433, DOI 10.1002/cpa.3160420603 Dolbeault Dolbeault, J., Explosion à temps fini et évanescence en temps grand dans les équations cinétiques de la gravitation, unpublished manuscript. FMR Fibich, G.; Merle, F.; Raphaël, P., Numerical proof of a spectral property related to the singularity formation for the $L^2$ critical non linear Schrödinger equation, to appear in Physica D. fridman Fridmann, A. M.; Polyachenko, V. L., Physics of gravitating systems, Springer-Verlag FL Frohlich, J.; Lenzman, E., Dynamical Collapse of White Dwarfs in Hartree- and Hartree-Fock Theory, preprint arXiv/math-ph/0608020. FJLFrohlich, J.; Jonsson, L.; Lenzman, E., Boson Stars as Solitary Waves, to appear in Commun. Math. Phys., preprint arXiv/math-ph/0512040.
- Robert T. Glassey, The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1379589, DOI 10.1137/1.9781611971477
- Robert T. Glassey and Jack Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys. 101 (1985), no. 4, 459–473. MR 815195, DOI 10.1007/BF01210740
- R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys. 119 (1988), no. 3, 353–384. MR 969207, DOI 10.1007/BF01218078
- Robert T. Glassey and Jack Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. I, II, Arch. Rational Mech. Anal. 141 (1998), no. 4, 331–354, 355–374. MR 1620506, DOI 10.1007/s002050050079
- Robert T. Glassey and Jack Schaeffer, On global symmetric solutions to the relativistic Vlasov-Poisson equation in three space dimensions, Math. Methods Appl. Sci. 24 (2001), no. 3, 143–157. MR 1810884, DOI 10.1002/1099-1476(200102)24:3<143::AID-MMA202>3.3.CO;2-3
- Robert T. Glassey and Walter A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), no. 1, 59–90. MR 816621, DOI 10.1007/BF00250732
- Yan Guo and Gerhard Rein, Isotropic steady states in galactic dynamics, Comm. Math. Phys. 219 (2001), no. 3, 607–629. MR 1838751, DOI 10.1007/s002200100434 HR Hadzic, M; Rein; G., Global existence and nonlinear stability for the relativistic Vlasov-Poisson system in the gravitational case, to appear in Indiana Univ. Math. J. KS Krieger, J., Schlag, W., Non-generic blow-up solutions for the critical focusing NLS in 1-d, preprint (2005). LMR1 Lemou, M.; Méhats, F.; Raphaël, P., On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov-Poisson system, to appear in Arch. Rat. Mech. Anal. LMR2 Lemou, M.; Méhats, F.; Raphaël, P., Structure of the linearized gravitational Vlasov-Poisson system close to a polytropic ground state, to appear in SIAM J. Math. Anal. LMR3 Lemou, M.; Méhats, F.; Raphaël, P., Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov-Poisson system, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.
- Elliott H. Lieb and Horng-Tzer Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), no. 1, 147–174. MR 904142, DOI 10.1007/BF01217684
- P.-L. Lions and B. Perthame, Propagation of moments and regularity for the $3$-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), no. 2, 415–430 (English, with French summary). MR 1115549, DOI 10.1007/BF01232273
- José M. Martín-García and Carsten Gundlach, Self-similar spherically symmetric solutions of the massless Einstein-Vlasov system, Phys. Rev. D (3) 65 (2002), no. 8, 084026, 18. MR 1899211, DOI 10.1103/PhysRevD.65.084026
- Frank Merle and Pierre Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161 (2005), no. 1, 157–222. MR 2150386, DOI 10.4007/annals.2005.161.157
- F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), no. 3, 591–642. MR 1995801, DOI 10.1007/s00039-003-0424-9
- Frank Merle and Pierre Raphael, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), no. 3, 565–672. MR 2061329, DOI 10.1007/s00222-003-0346-z
- Frank Merle and Pierre Raphael, On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37–90. MR 2169042, DOI 10.1090/S0894-0347-05-00499-6
- Frank Merle and Pierre Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675–704. MR 2116733, DOI 10.1007/s00220-004-1198-0
- K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations 95 (1992), no. 2, 281–303. MR 1165424, DOI 10.1016/0022-0396(92)90033-J PR Planchon, F.; Raphaël, P., Existence and stability of the log-log blow up dynamics for the $L^2$-critical nonlinear Schrödinger equation in a domain, to appear in Ann. Henri Poincare.
- Pierre Raphael, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann. 331 (2005), no. 3, 577–609. MR 2122541, DOI 10.1007/s00208-004-0596-0
- Pierre Raphaël, Existence and stability of a solution blowing up on a sphere for an $L^2$-supercritical nonlinear Schrödinger equation, Duke Math. J. 134 (2006), no. 2, 199–258. MR 2248831, DOI 10.1215/S0012-7094-06-13421-X
- G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Comm. Math. Phys. 150 (1992), no. 3, 561–583. MR 1204320, DOI 10.1007/BF02096962
- Jack Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1313–1335. MR 1132787, DOI 10.1080/03605309108820801
- Jack Schaeffer, Steady states in galactic dynamics, Arch. Ration. Mech. Anal. 172 (2004), no. 1, 1–19. MR 2048565, DOI 10.1007/s00205-004-0308-7 VKF Van Kampen, N.G.; Felderhof, B.V., Theoretical methods in plasma physics, Amsterdam, North Holland, 1967.
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044, DOI 10.1007/BF01208265
Bibliographic Information
- Mohammed Lemou
- Affiliation: CNRS and Université Paul Sabatier, MIP, 118, Route de Narbonne, 31062 Toulouse, France
- MR Author ID: 355223
- Florian Méhats
- Affiliation: IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
- MR Author ID: 601414
- Pierre Raphaël
- Affiliation: CNRS and Université Paris-Sud, Orsay, France
- Received by editor(s): November 8, 2006
- Published electronically: November 29, 2007
- © Copyright 2007 American Mathematical Society
- Journal: J. Amer. Math. Soc. 21 (2008), 1019-1063
- MSC (2000): Primary 82C70, 35Q55, 35Q75, 85A05, 74H35
- DOI: https://doi.org/10.1090/S0894-0347-07-00579-6
- MathSciNet review: 2425179