## Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators

HTML articles powered by AMS MathViewer

- by Rupert L. Frank, Elliott H. Lieb and Robert Seiringer;
- J. Amer. Math. Soc.
**21**(2008), 925-950 - DOI: https://doi.org/10.1090/S0894-0347-07-00582-6
- Published electronically: October 10, 2007

## Abstract:

We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight $C |x|^{-2}$ is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality for such operators. Similar results are true for fractional powers of the Laplacian and the Hardy-weight and, in particular, for relativistic Schrödinger operators. We also allow for the inclusion of magnetic vector potentials. As an application, we extend, for the first time, the proof of stability of relativistic matter with magnetic fields all the way up to the critical value of the nuclear charge $Z\alpha =2/\pi$, for $\alpha$ less than some critical value.## References

- Milton Abramowitz and Irene A. Stegun (eds.),
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR**1225604** - William Beckner,
*Pitt’s inequality and the uncertainty principle*, Proc. Amer. Math. Soc.**123**(1995), no. 6, 1897–1905. MR**1254832**, DOI 10.1090/S0002-9939-1995-1254832-9
[Be2]Be2 W. Beckner, - Haïm Brezis and Elliott H. Lieb,
*Sobolev inequalities with remainder terms*, J. Funct. Anal.**62**(1985), no. 1, 73–86. MR**790771**, DOI 10.1016/0022-1236(85)90020-5 - Haim Brezis and Juan Luis Vázquez,
*Blow-up solutions of some nonlinear elliptic problems*, Rev. Mat. Univ. Complut. Madrid**10**(1997), no. 2, 443–469. MR**1605678** - Ingrid Daubechies,
*An uncertainty principle for fermions with generalized kinetic energy*, Comm. Math. Phys.**90**(1983), no. 4, 511–520. MR**719431**, DOI 10.1007/BF01216182 - E. B. Davies,
*Heat kernels and spectral theory*, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990. MR**1103113** - William F. Donoghue Jr.,
*Monotone matrix functions and analytic continuation*, Die Grundlehren der mathematischen Wissenschaften, Band 207, Springer-Verlag, New York-Heidelberg, 1974. MR**486556**, DOI 10.1007/978-3-642-65755-9 - T. Ekholm and R. L. Frank,
*On Lieb-Thirring inequalities for Schrödinger operators with virtual level*, Comm. Math. Phys.**264**(2006), no. 3, 725–740. MR**2217288**, DOI 10.1007/s00220-006-1521-z
[FLS]FLS R.L. Frank, E.H. Lieb, R. Seiringer, - Ira W. Herbst,
*Spectral theory of the operator $(p^{2}+m^{2})^{1/2}-Ze^{2}/r$*, Comm. Math. Phys.**53**(1977), no. 3, 285–294. MR**436854** - Elliott H. Lieb,
*The number of bound states of one-body Schroedinger operators and the Weyl problem*, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980, pp. 241–252. MR**573436** - Elliott H. Lieb,
*Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities*, Ann. of Math. (2)**118**(1983), no. 2, 349–374. MR**717827**, DOI 10.2307/2007032 - Elliott H. Lieb,
*The stability of matter: from atoms to stars*, Bull. Amer. Math. Soc. (N.S.)**22**(1990), no. 1, 1–49. MR**1014510**, DOI 10.1090/S0273-0979-1990-15831-8 - Elliott H. Lieb,
*The stability of matter and quantum electrodynamics*, Fundamental physics—Heisenberg and beyond, Springer, Berlin, 2004, pp. 53–68. MR**2091506** - Elliott H. Lieb and Michael Loss,
*Analysis*, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR**1817225**, DOI 10.1090/gsm/014
[LTh]LTh E. H. Lieb, W. Thirring, - Elliott H. Lieb and Horng-Tzer Yau,
*The stability and instability of relativistic matter*, Comm. Math. Phys.**118**(1988), no. 2, 177–213. MR**956165**, DOI 10.1007/BF01218577 - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. I*, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR**751959** - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. I. Functional analysis*, Academic Press, New York-London, 1972. MR**493419** - G. Rozenblyum and M. Solomyak,
*The Cwikel-Lieb-Rozenblyum estimator for generators of positive semigroups and semigroups dominated by positive semigroups*, Algebra i Analiz**9**(1997), no. 6, 214–236 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**9**(1998), no. 6, 1195–1211. MR**1610184** - Barry Simon,
*Maximal and minimal Schrödinger forms*, J. Operator Theory**1**(1979), no. 1, 37–47. MR**526289** - Barry Simon,
*Functional integration and quantum physics*, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005. MR**2105995**, DOI 10.1090/chel/351 - D. Yafaev,
*Sharp constants in the Hardy-Rellich inequalities*, J. Funct. Anal.**168**(1999), no. 1, 121–144. MR**1717839**, DOI 10.1006/jfan.1999.3462

*Pitt’s inequality with sharp error estimates*, preprint arXiv:math/0701939.

*Stability of relativistic matter with magnetic fields for nuclear charges up to the critical value*, Commun. Math. Phys.

**275**(2007) no. 2, 479–489.

*Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities*. Studies in Mathematical Physics, 269–303. Princeton University Press, Princeton, NJ, 1976.

## Bibliographic Information

**Rupert L. Frank**- Affiliation: Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden
- Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 728268
- ORCID: 0000-0001-7973-4688
- Email: rupert@math.kth.se, rlfrank@math.princeton.edu
**Elliott H. Lieb**- Affiliation: Departments of Mathematics and Physics, Princeton University, P. O. Box 708, Princeton, New Jersey 08544
- Email: lieb@princeton.edu
**Robert Seiringer**- Affiliation: Department of Physics, Princeton University, P. O. Box 708, Princeton, New Jersey 08544
- Email: rseiring@princeton.edu
- Received by editor(s): October 18, 2006
- Published electronically: October 10, 2007
- © Copyright 2007 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
- Journal: J. Amer. Math. Soc.
**21**(2008), 925-950 - MSC (2000): Primary 35P15; Secondary 81Q10
- DOI: https://doi.org/10.1090/S0894-0347-07-00582-6
- MathSciNet review: 2425175