On conformally Kähler, Einstein manifolds
HTML articles powered by AMS MathViewer
- by Xiuxiong Chen, Claude LeBrun and Brian Weber;
- J. Amer. Math. Soc. 21 (2008), 1137-1168
- DOI: https://doi.org/10.1090/S0894-0347-08-00594-8
- Published electronically: January 28, 2008
- PDF | Request permission
Abstract:
We prove that any compact complex surface with $c_1>0$ admits an Einstein metric which is conformally related to a Kähler metric. The key new ingredient is the existence of such a metric on the blow-up $\mathbb {CP}_2\# 2\overline {\mathbb {CP}_2}$ of the complex projective plane at two distinct points.References
- Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), no. 3, 455–490. MR 999661, DOI 10.1090/S0894-0347-1989-0999661-1
- Michael T. Anderson, Orbifold compactness for spaces of Riemannian metrics and applications, Math. Ann. 331 (2005), no. 4, 739–778. MR 2148795, DOI 10.1007/s00208-004-0603-5
- Michael T. Anderson, Canonical metrics on 3-manifolds and 4-manifolds, Asian J. Math. 10 (2006), no. 1, 127–163. MR 2213687, DOI 10.4310/AJM.2006.v10.n1.a8 arpasing C. Arezzo, F. Pacard, and M. Singer, Extremal metrics on blow ups. e-print math.DG/0701028.
- M. F. Atiyah, Green’s functions for self-dual four-manifolds, Mathematical analysis and applications, Part A, Adv. Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 129–158. MR 634238
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- Thierry Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Aiii, A119–A121. MR 433520
- Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1636569, DOI 10.1007/978-3-662-13006-3
- Rudolf Bach, Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs, Math. Z. 9 (1921), no. 1-2, 110–135 (German). MR 1544454, DOI 10.1007/BF01378338
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 269–294 (French). MR 543218, DOI 10.24033/asens.1367
- Eugenio Calabi, Isometric families of Kähler structures, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979) Springer, New York-Berlin, 1980, pp. 23–39. MR 609556
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 259–290. MR 645743
- Eugenio Calabi, Extremal Kähler metrics. II, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 95–114. MR 780039
- David M. J. Calderbank and Michael A. Singer, Einstein metrics and complex singularities, Invent. Math. 156 (2004), no. 2, 405–443. MR 2052611, DOI 10.1007/s00222-003-0344-1 xxel X. X. Chen, Space of Kähler metrics III–on the lower bound of the Calabi energy and geodesic distance, e-print math.DG/0606228.
- Xiuxiong Chen and Gang Tian, Uniqueness of extremal Kähler metrics, C. R. Math. Acad. Sci. Paris 340 (2005), no. 4, 287–290 (English, with English and French summaries). MR 2121892, DOI 10.1016/j.crma.2004.11.028 chenweb X. X. Chen and B. Weber, Moduli spaces of critical Riemannian metrics with L$^{n/2}$ norm curvature bounds, e-print arXiv:0705.4440, 2007.
- Shiing-shen Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747–752. MR 11027, DOI 10.2307/1969302
- Andrzej Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405–433. MR 707181
- S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479–522. MR 1916953, DOI 10.4310/jdg/1090349449
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506, DOI 10.4310/jdg/1090950195
- Robert Friedman and John W. Morgan, Algebraic surfaces and Seiberg-Witten invariants, J. Algebraic Geom. 6 (1997), no. 3, 445–479. MR 1487223
- Akira Fujiki, Compact self-dual manifolds with torus actions, J. Differential Geom. 55 (2000), no. 2, 229–324. MR 1847312
- Akito Futaki and Toshiki Mabuchi, Uniqueness and periodicity of extremal Kähler vector fields, Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993) Lecture Notes Ser., vol. 18, Seoul Nat. Univ., Seoul, 1993, pp. 217–239. MR 1270938
- G. W. Gibbons and S. W. Hawking, Classification of gravitational instanton symmetries, Comm. Math. Phys. 66 (1979), no. 3, 291–310. MR 535152, DOI 10.1007/BF01197189
- C. Denson Hill and Michael Taylor, Integrability of rough almost complex structures, J. Geom. Anal. 13 (2003), no. 1, 163–172. MR 1967042, DOI 10.1007/BF02931002
- Nigel Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geometry 9 (1974), 435–441. MR 350657
- N. J. Hitchin, Polygons and gravitons, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 3, 465–476. MR 520463, DOI 10.1017/S0305004100055924
- N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), no. 1, 133–150. MR 623721, DOI 10.1112/plms/s3-43.1.133
- Andrew D. Hwang and Santiago R. Simanca, Extremal Kähler metrics on Hirzebruch surfaces which are locally conformally equivalent to Einstein metrics, Math. Ann. 309 (1997), no. 1, 97–106. MR 1467648, DOI 10.1007/s002080050104
- Dominic D. Joyce, Explicit construction of self-dual $4$-manifolds, Duke Math. J. 77 (1995), no. 3, 519–552. MR 1324633, DOI 10.1215/S0012-7094-95-07716-3
- Peter Benedict Kronheimer, Instantons gravitationnels et singularités de Klein, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 2, 53–55 (French, with English summary). MR 851268
- P. B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989), no. 3, 685–697. MR 992335, DOI 10.4310/jdg/1214443067
- Claude LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), no. 4, 591–596. MR 962489, DOI 10.1007/BF01221110
- Claude LeBrun, Explicit self-dual metrics on $\textbf {C}\textrm {P}_2\#\cdots \#\textbf {C}\textrm {P}_2$, J. Differential Geom. 34 (1991), no. 1, 223–253. MR 1114461
- Claude LeBrun, Twistors, Kähler manifolds, and bimeromorphic geometry. I, J. Amer. Math. Soc. 5 (1992), no. 2, 289–316. MR 1137098, DOI 10.1090/S0894-0347-1992-1137098-5
- Claude LeBrun, Anti-self-dual metrics and Kähler geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 498–507. MR 1403950
- C. LeBrun, On the scalar curvature of complex surfaces, Geom. Funct. Anal. 5 (1995), no. 3, 619–628. MR 1339820, DOI 10.1007/BF01895835
- Claude LeBrun, Einstein metrics on complex surfaces, Geometry and physics (Aarhus, 1995) Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, 1997, pp. 167–176. MR 1423163
- Claude LeBrun, Twistors for tourists: a pocket guide for algebraic geometers, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 361–385. MR 1492540, DOI 10.1090/pspum/062.2/1492540
- Claude LeBrun and Santiago R. Simanca, On the Kähler classes of extremal metrics, Geometry and global analysis (Sendai, 1993) Tohoku Univ., Sendai, 1993, pp. 255–271. MR 1361191
- C. LeBrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994), no. 3, 298–336. MR 1274118, DOI 10.1007/BF01896244
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, DOI 10.1090/S0273-0979-1987-15514-5
- Jacqueline Lelong-Ferrand, Transformations conformes et quasiconformes des variétés riemanniennes; application à la démonstration d’une conjecture de A. Lichnerowicz, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A583–A586 (French). MR 254782
- Peter Li and Luen-Fai Tam, Harmonic functions and the structure of complete manifolds, J. Differential Geom. 35 (1992), no. 2, 359–383. MR 1158340
- Peter Li and Luen-Fai Tam, Green’s functions, harmonic functions, and volume comparison, J. Differential Geom. 41 (1995), no. 2, 277–318. MR 1331970
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
- Ai-Ko Liu, Some new applications of general wall crossing formula, Gompf’s conjecture and its applications, Math. Res. Lett. 3 (1996), no. 5, 569–585. MR 1418572, DOI 10.4310/MRL.1996.v3.n5.a1
- Toshiki Mabuchi, Stability of extremal Kähler manifolds, Osaka J. Math. 41 (2004), no. 3, 563–582. MR 2107663 gideon G. Maschler, Distinguished Kähler Metrics and Equivariant Cohomological Invariants, PhD thesis, State University of New York at Stony Brook, 1997. http://www.mathcs. emory.edu/$\sim$gm/bss4forC.pdf.
- Yozô Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145–150 (French). MR 94478, DOI 10.1017/S0027763000002026
- Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247–258. MR 303464
- Hiroshi Ohta and Kaoru Ono, Notes on symplectic $4$-manifolds with $b^+_2=1$. II, Internat. J. Math. 7 (1996), no. 6, 755–770. MR 1417784, DOI 10.1142/S0129167X96000402 page D. Page, A compact rotating gravitational instanton, Phys. Lett., 79B (1979), pp. 235–238.
- Roger Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), no. 1, 31–52. MR 439004, DOI 10.1007/bf00762011
- Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 2, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1986. Spinor and twistor methods in space-time geometry. MR 838301, DOI 10.1017/CBO9780511524486
- Massimiliano Pontecorvo, Uniformization of conformally flat Hermitian surfaces, Differential Geom. Appl. 2 (1992), no. 3, 295–305. MR 1245329, DOI 10.1016/0926-2245(92)90016-G
- J. Ross, Unstable products of smooth curves, Invent. Math. 165 (2006), no. 1, 153–162. MR 2221139, DOI 10.1007/s00222-005-0490-8
- Julius Ross and Richard Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom. 72 (2006), no. 3, 429–466. MR 2219940
- Santiago R. Simanca, Strongly extremal Kähler metrics, Ann. Global Anal. Geom. 18 (2000), no. 1, 29–46. MR 1739523, DOI 10.1023/A:1006688000057
- Santiago R. Simanca and Luisa D. Stelling, Canonical Kähler classes, Asian J. Math. 5 (2001), no. 4, 585–598. MR 1913812, DOI 10.4310/AJM.2001.v5.n4.a1
- John A. Thorpe, Some remarks on the Gauss-Bonnet integral, J. Math. Mech. 18 (1969), 779–786. MR 256307
- G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. MR 1055713, DOI 10.1007/BF01231499 tianote —, Moduli space of extremal Kähler metrics, unpublished notes, SUNY Stony Brook, 1992.
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176 tvale G. Tian and J. Viaclovsky, Volume growth, curvature decay, and critical metrics, e-print math.DG/0612491.
- Gang Tian and Jeff Viaclovsky, Bach-flat asymptotically locally Euclidean metrics, Invent. Math. 160 (2005), no. 2, 357–415. MR 2138071, DOI 10.1007/s00222-004-0412-1
- Gang Tian and Jeff Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math. 196 (2005), no. 2, 346–372. MR 2166311, DOI 10.1016/j.aim.2004.09.004
- Gang Tian and Shing-Tung Yau, Kähler-Einstein metrics on complex surfaces with $C_1>0$, Comm. Math. Phys. 112 (1987), no. 1, 175–203. MR 904143, DOI 10.1007/BF01217685
- Edward Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. MR 1306021, DOI 10.4310/MRL.1994.v1.n6.a13
- Shing Tung Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799. MR 451180, DOI 10.1073/pnas.74.5.1798
Bibliographic Information
- Xiuxiong Chen
- Affiliation: Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, Wisconsin 53706-1388
- MR Author ID: 632654
- Email: xiu@math.wisc.edu
- Claude LeBrun
- Affiliation: Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651
- MR Author ID: 111330
- ORCID: 0000-0002-6794-2081
- Email: claude@math.sunysb.edu
- Brian Weber
- Affiliation: Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651
- MR Author ID: 710322
- Email: brweber@math.sunysb.edu
- Received by editor(s): May 3, 2007
- Published electronically: January 28, 2008
- Additional Notes: The first author was supported in part by NSF grant DMS-0406346
The second author was supported in part by NSF grant DMS-0604735 - © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 21 (2008), 1137-1168
- MSC (2000): Primary 53C55; Secondary 14J80, 53A30, 53C25
- DOI: https://doi.org/10.1090/S0894-0347-08-00594-8
- MathSciNet review: 2425183