## Localization for quantum groups at a root of unity

HTML articles powered by AMS MathViewer

- by Erik Backelin and Kobi Kremnizer PDF
- J. Amer. Math. Soc.
**21**(2008), 1001-1018 Request permission

## Abstract:

In the paper *Quantum flag varieties, equivariant quantum $\mathcal {D}$-modules, and localization of Quantum groups*, Backelin and Kremnizer defined categories of equivariant quantum $\mathcal {O}_q$-modules and $\mathcal {D}_q$-modules on the quantum flag variety of $G$. We proved that the Beilinson-Bernstein localization theorem holds at a generic $q$. Here we prove that a derived version of this theorem holds at the root of unity case. Namely, the global section functor gives a derived equivalence between categories of $U_q$-modules and $\mathcal {D}_q$-modules on the quantum flag variety.

For this we first prove that $\mathcal {D}_q$ is an Azumaya algebra over a dense subset of the cotangent bundle $T^\star X$ of the classical (char $0$) flag variety $X$. This way we get a derived equivalence between representations of $U_q$ and certain $\mathcal {O}_{T^\star X}$-modules.

In the paper *Localization for a semi-simple Lie algebra in prime characteristic*, by Bezrukavnikov, Mirkovic, and Rumynin, similar results were obtained for a Lie algebra $\mathfrak {g}_p$ in char $p$. Hence, representations of $\mathfrak {g}_p$ and of $U_q$ (when $q$ is a $p$’th root of unity) are related via the cotangent bundles $T^\star X$ in char $0$ and in char $p$, respectively.

## References

- Sergey Arkhipov, Roman Bezrukavnikov, and Victor Ginzburg,
*Quantum groups, the loop Grassmannian, and the Springer resolution*, J. Amer. Math. Soc.**17**(2004), no. 3, 595–678. MR**2053952**, DOI 10.1090/S0894-0347-04-00454-0 - Sergey Arkhipov and Dennis Gaitsgory,
*Another realization of the category of modules over the small quantum group*, Adv. Math.**173**(2003), no. 1, 114–143. MR**1954457**, DOI 10.1016/S0001-8708(02)00016-6 - Henning Haahr Andersen and Jens Carsten Jantzen,
*Cohomology of induced representations for algebraic groups*, Math. Ann.**269**(1984), no. 4, 487–525. MR**766011**, DOI 10.1007/BF01450762 - H. H. Andersen, J. C. Jantzen, and W. Soergel,
*Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$*, Astérisque**220**(1994), 321 (English, with English and French summaries). MR**1272539** - Henning Haahr Andersen, Patrick Polo, and Ke Xin Wen,
*Representations of quantum algebras*, Invent. Math.**104**(1991), no. 1, 1–59. MR**1094046**, DOI 10.1007/BF01245066 - Erik Backelin and Kobi Kremnizer,
*Quantum flag varieties, equivariant quantum $\scr D$-modules, and localization of quantum groups*, Adv. Math.**203**(2006), no. 2, 408–429. MR**2227727**, DOI 10.1016/j.aim.2005.04.012 - Alexandre Beĭlinson and Joseph Bernstein,
*Localisation de $g$-modules*, C. R. Acad. Sci. Paris Sér. I Math.**292**(1981), no. 1, 15–18 (French, with English summary). MR**610137**
[BMR]BMR A. Bezrukavnikov, I. Mirkovic and D. Rumynin, - Kenneth A. Brown and Iain Gordon,
*The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras*, Math. Z.**238**(2001), no. 4, 733–779. MR**1872572**, DOI 10.1007/s002090100274 - Vyjayanthi Chari and Andrew Pressley,
*A guide to quantum groups*, Cambridge University Press, Cambridge, 1995. Corrected reprint of the 1994 original. MR**1358358** - C. De Concini, V. G. Kac, and C. Procesi,
*Quantum coadjoint action*, J. Amer. Math. Soc.**5**(1992), no. 1, 151–189. MR**1124981**, DOI 10.1090/S0894-0347-1992-1124981-X - Corrado De Concini and Volodimir Lyubashenko,
*Quantum function algebra at roots of $1$*, Adv. Math.**108**(1994), no. 2, 205–262. MR**1296515**, DOI 10.1006/aima.1994.1071 - Anthony Joseph,
*Faithfully flat embeddings for minimal primitive quotients of quantized enveloping algebras*, Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992) Israel Math. Conf. Proc., vol. 7, Bar-Ilan Univ., Ramat Gan, 1993, pp. 79–106. MR**1261902** - Anthony Joseph and Gail Letzter,
*Local finiteness of the adjoint action for quantized enveloping algebras*, J. Algebra**153**(1992), no. 2, 289–318. MR**1198203**, DOI 10.1016/0021-8693(92)90157-H - Masaharu Kaneda,
*Cohomology of infinitesimal quantum algebras*, J. Algebra**226**(2000), no. 1, 250–282. MR**1749888**, DOI 10.1006/jabr.1999.8171
[Kr]Kr K. Kremnizer - D. Woodcock,
*Schur algebras and global bases: new proofs of old vanishing theorems*, J. Algebra**191**(1997), no. 1, 331–370. MR**1444503**, DOI 10.1006/jabr.1997.7030

*Localization for a semi-simple Lie algebra in prime characteristic*, arXiv:math.RT/0205144.

*Proof of the De Concini-Kac-Processi conjecture*, math/0611236.

## Additional Information

**Erik Backelin**- Affiliation: Departamento de Matemáticas, Universidad de Los Andes, Carrera 4, 26-51, Bogota, Colombia
- Email: erbackel@uniandes.edu.co
**Kobi Kremnizer**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
- Email: kremnize@math.mit.edu
- Received by editor(s): November 1, 2006
- Published electronically: June 19, 2008
- Additional Notes: The second author was supported in part by NSF grant DMS-0602007
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**21**(2008), 1001-1018 - MSC (2000): Primary 14A22, 17B37, 58B32; Secondary 20G42
- DOI: https://doi.org/10.1090/S0894-0347-08-00608-5
- MathSciNet review: 2425178