## Analytic projections, Corona problem and geometry of holomorphic vector bundles

HTML articles powered by AMS MathViewer

- by Sergei Treil and Brett D. Wick
- J. Amer. Math. Soc.
**22**(2009), 55-76 - DOI: https://doi.org/10.1090/S0894-0347-08-00611-5
- Published electronically: July 31, 2008
- PDF | Request permission

## Abstract:

The main result of the paper is a theorem giving a sufficient condition for the existence of a bounded analytic projection onto a holomorphic family of generally infinite dimensional subspaces (a holomorphic sub-bundle of a trivial bundle). This sufficient condition is also necessary in the case of finite dimension or codimension of the bundle. A simple lemma of N. Nikolski connects the existence of a bounded analytic projection with the Operator Corona Problem (existence of a bounded analytic left inverse for an operator-valued function), so as corollaries of the main result we obtain new results about the Operator Corona Problem. In particular, we find a new sufficient condition, a complete solution in the case of finite codimension, and a solution of the generalized Corona Problem.## References

- Mats Andersson,
*The corona theorem for matrices*, Math. Z.**201**(1989), no. 1, 121–130. MR**990193**, DOI 10.1007/BF01161999 - Mats Andersson,
*The $H^2$ corona problem and $\overline \partial _b$ in weakly pseudoconvex domains*, Trans. Amer. Math. Soc.**342**(1994), no. 1, 241–255. MR**1145727**, DOI 10.1090/S0002-9947-1994-1145727-3 - S. L. Campbell and C. D. Meyer Jr.,
*Generalized inverses of linear transformations*, Dover Publications, Inc., New York, 1991. Corrected reprint of the 1979 original. MR**1105324** - Lennart Carleson,
*Interpolations by bounded analytic functions and the corona problem*, Ann. of Math. (2)**76**(1962), 547–559. MR**141789**, DOI 10.2307/1970375 - John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971** - Peter Lancaster and Miron Tismenetsky,
*The theory of matrices*, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1985. MR**792300** - Nikolai K. Nikolski,
*Operators, functions, and systems: an easy reading. Vol. 1*, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002. Hardy, Hankel, and Toeplitz; Translated from the French by Andreas Hartmann. MR**1864396** - N. K. Nikol′skiĭ,
*Treatise on the shift operator*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR**827223**, DOI 10.1007/978-3-642-70151-1 - Marvin Rosenblum,
*A corona theorem for countably many functions*, Integral Equations Operator Theory**3**(1980), no. 1, 125–137. MR**570865**, DOI 10.1007/BF01682874 - V. A. Tolokonnikov,
*Estimates in the Carleson corona theorem, ideals of the algebra $H^{\infty }$, a problem of Sz.-Nagy*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**113**(1981), 178–198, 267 (Russian, with English summary). Investigations on linear operators and the theory of functions, XI. MR**629839** - Tavan T. Trent,
*A new estimate for the vector valued corona problem*, J. Funct. Anal.**189**(2002), no. 1, 267–282. MR**1887635**, DOI 10.1006/jfan.2001.3842 - S. R. Treil′,
*Angles between co-invariant subspaces, and the operator corona problem. The Szőkefalvi-Nagy problem*, Dokl. Akad. Nauk SSSR**302**(1988), no. 5, 1063–1068 (Russian); English transl., Soviet Math. Dokl.**38**(1989), no. 2, 394–399. MR**981054** - S. R. Treil′,
*Geometric methods in spectral theory of vector-valued functions: some recent results*, Toeplitz operators and spectral function theory, Oper. Theory Adv. Appl., vol. 42, Birkhäuser, Basel, 1989, pp. 209–280. MR**1030053**, DOI 10.1007/978-3-0348-5587-7_{5} - S. Treil,
*Unconditional bases of invariant subspaces of a contraction with finite defects*, Indiana Univ. Math. J.**46**(1997), no. 4, 1021–1054. MR**1631552**, DOI 10.1512/iumj.1997.46.1297 - Sergei Treil,
*An operator Corona theorem*, Indiana Univ. Math. J.**53**(2004), no. 6, 1763–1780. MR**2106344**, DOI 10.1512/iumj.2004.53.2640 - S. Treil,
*Lower bounds in the matrix Corona theorem and the codimension one conjecture*, Geom. Funct. Anal.**14**(2004), no. 5, 1118–1133. MR**2105955**, DOI 10.1007/s00039-004-0485-4 - Sergei Treil and Alexander Volberg,
*A fixed point approach to Nehari’s problem and its applications*, Toeplitz operators and related topics (Santa Cruz, CA, 1992) Oper. Theory Adv. Appl., vol. 71, Birkhäuser, Basel, 1994, pp. 165–186. MR**1300219** - Sergei Treil and Brett D. Wick,
*The matrix-valued $H^p$ corona problem in the disk and polydisk*, J. Funct. Anal.**226**(2005), no. 1, 138–172. MR**2158178**, DOI 10.1016/j.jfa.2005.04.010
UchiyamaA. Uchiyama, Corona theorems for countably many functions and estimates for their solutions, preprint, UCLA, 1980.
- N. Th. Varopoulos,
*BMO functions and the $\overline \partial$-equation*, Pacific J. Math.**71**(1977), no. 1, 221–273. MR**508035**, DOI 10.2140/pjm.1977.71.221

## Bibliographic Information

**Sergei Treil**- Affiliation: Department of Mathematics, Brown University, 151 Thayer Street, Box 1917, Providence, Rhode Island 02912
- MR Author ID: 232797
- Email: treil@math.brown.edu
**Brett D. Wick**- Affiliation: Department of Mathematics, University of South Carolina, LeConte College, 1523 Greene Street, Columbia, South Carolina 29208
- MR Author ID: 766171
- ORCID: 0000-0003-1890-0608
- Email: wick@math.sc.edu
- Received by editor(s): January 14, 2006
- Published electronically: July 31, 2008
- Additional Notes: The work of the first author was supported by the National Science Foundation under Grant DMS-0501065
- © Copyright 2008 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**22**(2009), 55-76 - MSC (2000): Primary 30D55; Secondary 46J15, 46J20
- DOI: https://doi.org/10.1090/S0894-0347-08-00611-5
- MathSciNet review: 2449054