## Invariance of tautological equations II: Gromov-Witten theory

HTML articles powered by AMS MathViewer

- by Y.-P. Lee; with Appendix A by Y. Iwao; Y.-P. Lee
- J. Amer. Math. Soc.
**22**(2009), 331-352 - DOI: https://doi.org/10.1090/S0894-0347-08-00616-4
- Published electronically: September 24, 2008
- PDF | Request permission

## Abstract:

The aim of Part II is to explore the technique of*invariance of tautological equations*in the realm of Gromov–Witten theory. The relationship between Gromov–Witten theory and the tautological rings of the moduli of curves is studied from Givental’s point of view via deformation theory of semisimple axiomatic Gromov–Witten theory.

## References

- D. Arcara and Y.-P. Lee,
*Tautological equations in genus 2 via invariance constraints*, Bull. Inst. Math. Acad. Sin. (N.S.)**2**(2007), no. 1, 1–27. MR**2294106**
AL2 D. Arcara, Y.-P. Lee, - Tom Coates and Alexander Givental,
*Quantum Riemann-Roch, Lefschetz and Serre*, Ann. of Math. (2)**165**(2007), no. 1, 15–53. MR**2276766**, DOI 10.4007/annals.2007.165.15 - Robbert Dijkgraaf and Edward Witten,
*Mean field theory, topological field theory, and multi-matrix models*, Nuclear Phys. B**342**(1990), no. 3, 486–522. MR**1072731**, DOI 10.1016/0550-3213(90)90324-7
FSZ C. Faber, S. Shadrin, D. Zvonkine, - C. Faber and R. Pandharipande,
*Hodge integrals and Gromov-Witten theory*, Invent. Math.**139**(2000), no. 1, 173–199. MR**1728879**, DOI 10.1007/s002229900028 - C. Faber and R. Pandharipande,
*Relative maps and tautological classes*, J. Eur. Math. Soc. (JEMS)**7**(2005), no. 1, 13–49. MR**2120989**, DOI 10.4171/JEMS/20 - E. Getzler,
*Topological recursion relations in genus $2$*, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 73–106. MR**1672112** - Ezra Getzler,
*The jet-space of a Frobenius manifold and higher-genus Gromov-Witten invariants*, Frobenius manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, pp. 45–89. MR**2115766** - Alexander B. Givental,
*Gromov-Witten invariants and quantization of quadratic Hamiltonians*, Mosc. Math. J.**1**(2001), no. 4, 551–568, 645 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR**1901075**, DOI 10.17323/1609-4514-2001-1-4-551-568 - Alexander B. Givental,
*Symplectic geometry of Frobenius structures*, Frobenius manifolds, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, pp. 91–112. MR**2115767**
GL A. Givental, Y.-P. Lee, unpublished.
- M. Kontsevich and Yu. Manin,
*Gromov-Witten classes, quantum cohomology, and enumerative geometry*, Comm. Math. Phys.**164**(1994), no. 3, 525–562. MR**1291244**, DOI 10.1007/BF02101490 - M. Kontsevich and Yu. Manin,
*Relations between the correlators of the topological sigma-model coupled to gravity*, Comm. Math. Phys.**196**(1998), no. 2, 385–398. MR**1645019**, DOI 10.1007/s002200050426 - Y.-P. Lee,
*Invariance of tautological equations. I. Conjectures and applications*, J. Eur. Math. Soc. (JEMS)**10**(2008), no. 2, 399–413. MR**2390329**, DOI 10.4171/JEMS/115
ypL2 Y.-P. Lee, - Y.-P. Lee,
*Witten’s conjecture and the Virasoro conjecture for genus up to two*, Gromov-Witten theory of spin curves and orbifolds, Contemp. Math., vol. 403, Amer. Math. Soc., Providence, RI, 2006, pp. 31–42. MR**2234883**, DOI 10.1090/conm/403/07594
LP Y.-P. Lee, R. Pandharipande,

*Tautological equation in $\overline {M}_{3,1}$ via invariance constraints*, math.AG/0503184, to appear in Canadian Mathematical Bulletin. AL3 D. Arcara, Y.-P. Lee,

*On independence of generators of the tautological rings*, math.AG/0605488, to appear in Compositio Math.

*Tautological relations and the $r$-spin Witten conjecture*, arXiv:math/0612510.

*Witten’s conjecture, Virasoro conjecture, and invariance of tautological equations*, math.AG/0311100.

*Frobenius manifolds, Gromov–Witten theory, and Virasoro constraints*, in preparation. Materials needed for this paper are available from http://www.math.princeton.edu/˜rahulp/ cT C. Teleman,

*The structure of 2D semi-simple field theories*, arXiv:0712.0160. rV R. Vakil,

*The moduli space of curves and Gromov-Witten theory*, math.AG/0602347.

## Bibliographic Information

**Y.-P. Lee**- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112-0090
- MR Author ID: 618293
- Email: yplee@math.utah.edu
**Y. Iwao**- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112-0090
- Email: yshr19@gmail.com
- Received by editor(s): May 30, 2006
- Published electronically: September 24, 2008
- Additional Notes: This research was partially supported by NSF and an AMS Centennial Fellowship
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**22**(2009), 331-352 - MSC (2000): Primary 14N35, 14H10
- DOI: https://doi.org/10.1090/S0894-0347-08-00616-4
- MathSciNet review: 2476776