Corps de nombres peu ramifiés et formes automorphes autoduales
HTML articles powered by AMS MathViewer
- by G. Chenevier and L. Clozel;
- J. Amer. Math. Soc. 22 (2009), 467-519
- DOI: https://doi.org/10.1090/S0894-0347-08-00617-6
- Published electronically: September 17, 2008
- PDF | Request permission
Abstract:
Let $S$ be a finite set of primes, $p$ in $S$, and $\mathbb {Q}_S$ a maximal algebraic extension of $\mathbb {Q}$ unramified outside $S$ and $\infty$. Assume that $|S|\geq 2$. We show that the natural maps \[ \operatorname {Gal}(\overline {\mathbb {Q}_p}/\mathbb {Q}_p) \rightarrow \operatorname {Gal}(\mathbb {Q}_S/\mathbb {Q})\] are injective. Much of the paper is devoted to the problem of constructing self-dual automorphic cuspidal representations of $\operatorname {GL}(2n,\mathbb {A}_{\mathbb {Q}})$ with prescribed properties at all places, which we study via Arthur’s twisted trace formula. The techniques we develop also shed some light on the orthogonal/symplectic alternative for self-dual representations of $\operatorname {GL}(2n)$.References
- James Arthur, The invariant trace formula. I. Local theory, J. Amer. Math. Soc. 1 (1988), no. 2, 323–383. MR 928262, DOI 10.1090/S0894-0347-1988-0928262-5
- James Arthur, The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (1988), no. 3, 501–554. MR 939691, DOI 10.1090/S0894-0347-1988-0939691-8
- James Arthur, The local behaviour of weighted orbital integrals, Duke Math. J. 56 (1988), no. 2, 223–293. MR 932848, DOI 10.1215/S0012-7094-88-05612-8
- James Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 1–263. MR 2192011
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- J. N. Bernstein, Le “centre” de Bernstein, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32 (French). Edited by P. Deligne. MR 771671
- A. Borel, J.-P. Labesse, and J. Schwermer, On the cuspidal cohomology of $S$-arithmetic subgroups of reductive groups over number fields, Compositio Math. 102 (1996), no. 1, 1–40. MR 1394519
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1980. MR 554917
- Abderrazak Bouaziz, Sur les caractères des groupes de Lie réductifs non connexes, J. Funct. Anal. 70 (1987), no. 1, 1–79 (French). MR 870753, DOI 10.1016/0022-1236(87)90122-4
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- W. Casselman, A new nonunitarity argument for $p$-adic representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 907–928 (1982). MR 656064
- Gaëtan Chenevier, On number fields with given ramification, Compos. Math. 143 (2007), no. 6, 1359–1373. MR 2371372, DOI 10.1112/S0010437X07003132
- L. Clozel, Théorème d’Atiyah-Bott pour les variétés ${\mathfrak {p}}$-adiques et caractères des groupes réductifs, Mém. Soc. Math. France (N.S.) 15 (1984), 39–64 (French). Harmonic analysis on Lie groups and symmetric spaces (Kleebach, 1983). MR 789080
- Laurent Clozel, Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 77–159 (French). MR 1044819
- Laurent Clozel and Patrick Delorme, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II, Ann. Sci. École Norm. Sup. (4) 23 (1990), no. 2, 193–228 (French). MR 1046496, DOI 10.24033/asens.1602
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Guy Henniart, La conjecture de Langlands locale pour $\textrm {GL}(3)$, Mém. Soc. Math. France (N.S.) 11-12 (1984), 186 (French, with English summary). MR 743063 [He2]He G. Henniart, Correspondance de Langlands et fonctions $L$ des carrés extérieur et symétrique. Prépublications Mathématiques de l’IHES (2003).
- Amara Hitta, On the continuous (co)homology of locally profinite groups and the Künneth theorem, J. Algebra 163 (1994), no. 2, 481–494. MR 1262715, DOI 10.1006/jabr.1994.1028
- Robert E. Kottwitz, Tamagawa numbers, Ann. of Math. (2) 127 (1988), no. 3, 629–646. MR 942522, DOI 10.2307/2007007
- Robert E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), no. 4, 785–806. MR 683003
- Robert E. Kottwitz and Jonathan D. Rogawski, The distributions in the invariant trace formula are supported on characters, Canad. J. Math. 52 (2000), no. 4, 804–814. MR 1767403, DOI 10.4153/CJM-2000-034-6
- Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096
- Jean-Pierre Labesse, Cohomologie, stabilisation et changement de base, Astérisque 257 (1999), vi+161 (French, with English and French summaries). Appendix A by Laurent Clozel and Labesse, and Appendix B by Lawrence Breen. MR 1695940
- J.-P. Labesse, Pseudo-coefficients très cuspidaux et $K$-théorie, Math. Ann. 291 (1991), no. 4, 607–616 (French). MR 1135534, DOI 10.1007/BF01445230
- R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 205–246. MR 546619
- Paul Mezo, Twisted trace Paley-Wiener theorems for special and general linear groups, Compos. Math. 140 (2004), no. 1, 205–227. MR 2004130, DOI 10.1112/S0010437X03000095
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196 [PR]PR D. Prasad et D. Ramakrishnan, On self-dual representations of division algebras over local fields. Prépublication.
- J. D. Rogawski, Trace Paley-Wiener theorem in the twisted case, Trans. Amer. Math. Soc. 309 (1988), no. 1, 215–229. MR 957068, DOI 10.1090/S0002-9947-1988-0957068-2
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Stud., No. 70, Princeton Univ. Press, Princeton, NJ, 1971, pp. 77–169 (French). MR 385006
- Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, 75–102 (French). MR 1396897, DOI 10.1090/S0894-0347-97-00220-8
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, Twisted endoscopy and reducibility of induced representations for $p$-adic groups, Duke Math. J. 66 (1992), no. 1, 1–41. MR 1159430, DOI 10.1215/S0012-7094-92-06601-4
- D. Shelstad, Characters and inner forms of a quasi-split group over $\textbf {R}$, Compositio Math. 39 (1979), no. 1, 11–45. MR 539000
- Richard Taylor, Galois representations, Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), no. 1, 73–119 (English, with English and French summaries). MR 2060030, DOI 10.5802/afst.1065
- Richard Taylor and Teruyoshi Yoshida, Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), no. 2, 467–493. MR 2276777, DOI 10.1090/S0894-0347-06-00542-X
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 546588
- David A. Vogan Jr., Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), no. 1, 141–187. MR 750719, DOI 10.2307/2007074
- J.-L. Waldspurger, Le groupe $\textbf {GL}_N$ tordu, sur un corps $p$-adique. I, Duke Math. J. 137 (2007), no. 2, 185–234 (French, with English and French summaries). MR 2309147, DOI 10.1215/S0012-7094-07-13721-9
- J.-L. Waldspurger, Le groupe $\textbf {GL}_N$ tordu, sur un corps $p$-adique. II, Duke Math. J. 137 (2007), no. 2, 235–336 (French, with English and French summaries). MR 2309148, DOI 10.1215/S0012-7094-07-13722-0
Bibliographic Information
- G. Chenevier
- Affiliation: Laboratoire Analyse, Géométrie et Applications, UMR 7539, Institut Galilée, Université Paris 13, 99 Av. J-B. Clément, 93430 Villetaneuse, France
- L. Clozel
- Affiliation: Centre d’Orsay Mathematique, Université Paris XI, Batiment 425, 91405 Orsay Cedex France
- Received by editor(s): January 1, 2800
- Received by editor(s) in revised form: January 1, 2007
- Published electronically: September 17, 2008
- Additional Notes: Le deuxième auteur est un membre de l’Institut Universitaire de France
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 22 (2009), 467-519
- MSC (2000): Primary 11F70, 11F72, 11F80
- DOI: https://doi.org/10.1090/S0894-0347-08-00617-6
- MathSciNet review: 2476781