The classification of $2$-compact groups
HTML articles powered by AMS MathViewer
- by Kasper K. S. Andersen and Jesper Grodal;
- J. Amer. Math. Soc. 22 (2009), 387-436
- DOI: https://doi.org/10.1090/S0894-0347-08-00623-1
- Published electronically: November 3, 2008
- PDF | Request permission
Abstract:
We prove that any connected $2$–compact group is classified by its $2$–adic root datum, and in particular the exotic $2$–compact group $\operatorname {DI}(4)$, constructed by Dwyer–Wilkerson, is the only simple $2$–compact group not arising as the $2$–completion of a compact connected Lie group. Combined with our earlier work with Møller and Viruel for $p$ odd, this establishes the full classification of $p$–compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected $p$–compact groups and root data over the $p$–adic integers. As a consequence we prove the maximal torus conjecture, giving a one-to-one correspondence between compact Lie groups and finite loop spaces admitting a maximal torus. Our proof is a general induction on the dimension of the group, which works for all primes. It refines the Andersen–Grodal–Møller–Viruel methods by incorporating the theory of root data over the $p$–adic integers, as developed by Dwyer–Wilkerson and the authors. Furthermore we devise a different way of dealing with the rigidification problem by utilizing obstruction groups calculated by Jackowski–McClure–Oliver in the early 1990s.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 252560
- J. F. Adams and C. W. Wilkerson, Finite $H$-spaces and algebras over the Steenrod algebra, Ann. of Math. (2) 111 (1980), no. 1, 95–143. MR 558398, DOI 10.2307/1971218
- Kasper K. S. Andersen, The normalizer splitting conjecture for $p$-compact groups, Fund. Math. 161 (1999), no. 1-2, 1–16. Algebraic topology (Kazimierz Dolny, 1997). MR 1713198, DOI 10.4064/fm-161-1-2-1-16 AG06isogeny K. K. S. Andersen and J. Grodal, The isogeny theorem for $p$-compact groups, In preparation. AG08steenrod —, The Steenrod problem of realizing polynomial cohomology rings, J. Topol. (to appear). arXiv:0704.4002. AGskyetalk —, The classification of 2-compact groups (talk summary), arXiv:math.AT/0510180.
- Kasper K. S. Andersen and Jesper Grodal, Automorphisms of $p$-compact groups and their root data, Geom. Topol. 12 (2008), no. 3, 1427–1460. MR 2421132, DOI 10.2140/gt.2008.12.1427
- K. K. S. Andersen, J. Grodal, J. M. Møller, and A. Viruel, The classification of $p$-compact groups for $p$ odd, Ann. of Math. (2) 167 (2008), no. 1, 95–210. MR 2373153, DOI 10.4007/annals.2008.167.95
- Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. MR 682756
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 365573, DOI 10.1007/978-3-540-38117-4
- Carles Broto and Antonio Viruel, Projective unitary groups are totally $N$-determined $p$-compact groups, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 1, 75–88. MR 2034015, DOI 10.1017/S0305004103006996
- Natàlia Castellana, Ran Levi, and Dietrich Notbohm, Homology decompositions for $p$-compact groups, Adv. Math. 216 (2007), no. 2, 491–534. MR 2351369, DOI 10.1016/j.aim.2007.05.004
- Allan Clark and John Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425–434. MR 367979, DOI 10.2140/pjm.1974.50.425
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 632548
- Jean de Siebenthal, Sur les groupes de Lie compacts non connexes, Comment. Math. Helv. 31 (1956), 41–89 (French). MR 94408, DOI 10.1007/BF02564352
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 274458
- E. Dror, W. G. Dwyer, and D. M. Kan, Automorphisms of fibrations, Proc. Amer. Math. Soc. 80 (1980), no. 3, 491–494. MR 581012, DOI 10.1090/S0002-9939-1980-0581012-1
- W. G. Dwyer, Strong convergence of the Eilenberg-Moore spectral sequence, Topology 13 (1974), 255–265. MR 394663, DOI 10.1016/0040-9383(74)90018-4
- W. G. Dwyer, The centralizer decomposition of $BG$, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 167–184. MR 1397728
- W. G. Dwyer, Lie groups and $p$-compact groups, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 433–442. MR 1648093
- W. G. Dwyer, D. M. Kan, and J. H. Smith, Towers of fibrations and homotopical wreath products, J. Pure Appl. Algebra 56 (1989), no. 1, 9–28. MR 974710, DOI 10.1016/0022-4049(89)90119-9
- William G. Dwyer, Haynes R. Miller, and Clarence W. Wilkerson, The homotopic uniqueness of $BS^3$, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 90–105. MR 928825, DOI 10.1007/BFb0083002
- W. G. Dwyer, H. R. Miller, and C. W. Wilkerson, Homotopical uniqueness of classifying spaces, Topology 31 (1992), no. 1, 29–45. MR 1153237, DOI 10.1016/0040-9383(92)90062-M
- W. G. Dwyer and J. M. Møller, Homotopy fixed points for cyclic $p$-group actions, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3735–3739. MR 1443150, DOI 10.1090/S0002-9939-97-04190-7
- W. G. Dwyer and C. W. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), no. 1, 37–64. MR 1161306, DOI 10.1090/S0894-0347-1993-1161306-9
- W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395–442. MR 1274096, DOI 10.2307/2946585
- W. G. Dwyer and C. W. Wilkerson, The center of a $p$-compact group, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 119–157. MR 1320990, DOI 10.1090/conm/181/02032
- W. G. Dwyer and C. W. Wilkerson, Product splittings for $p$-compact groups, Fund. Math. 147 (1995), no. 3, 279–300. MR 1348723
- W. G. Dwyer and C. W. Wilkerson, Normalizers of tori, Geom. Topol. 9 (2005), 1337–1380. MR 2174268, DOI 10.2140/gt.2005.9.1337 DW06 —, The fundamental group of a $p$-compact group, J. Lond. Math. Soc. (to appear).
- Robert L. Griess Jr., Elementary abelian $p$-subgroups of algebraic groups, Geom. Dedicata 39 (1991), no. 3, 253–305. MR 1123145, DOI 10.1007/BF00150757
- Hans-Werner Henn, Jean Lannes, and Lionel Schwartz, The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, Amer. J. Math. 115 (1993), no. 5, 1053–1106. MR 1246184, DOI 10.2307/2375065
- Stefan Jackowski, James McClure, and Bob Oliver, Homotopy classification of self-maps of $BG$ via $G$-actions. I, Ann. of Math. (2) 135 (1992), no. 1, 183–226. MR 1147962, DOI 10.2307/2946568
- Stefan Jackowski, James McClure, and Bob Oliver, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995), no. 2, 99–126. MR 1341725
- Stefan Jackowski and Bob Oliver, Vector bundles over classifying spaces of compact Lie groups, Acta Math. 176 (1996), no. 1, 109–143. MR 1395671, DOI 10.1007/BF02547337
- Richard M. Kane, Implications in Morava $K$-theory, Mem. Amer. Math. Soc. 59 (1986), no. 340, iv+110. MR 823444, DOI 10.1090/memo/0340
- Akira Kono, On cohomology $\textrm {mod}\ 2$ of the classifying spaces of non-simply connected classical Lie groups, J. Math. Soc. Japan 27 (1975), 281–288. MR 418098, DOI 10.2969/jmsj/02720281
- Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un $p$-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135–244 (French). With an appendix by Michel Zisman. MR 1179079, DOI 10.1007/BF02699494
- James P. Lin, Torsion in $H$-spaces. I, Ann. of Math. (2) 103 (1976), no. 3, 457–487. MR 425961, DOI 10.2307/1970948
- James P. Lin, Torsion in $H$-spaces. II, Ann. of Math. (2) 107 (1978), no. 1, 41–88. MR 488044, DOI 10.2307/1971254
- James P. Lin, Two torsion and the loop space conjecture, Ann. of Math. (2) 115 (1982), no. 1, 35–91. MR 644016, DOI 10.2307/1971339 ndet2compactgroups.v2 J. M. Møller, N-determined 2-compact groups, arXiv:math.AT/0503371, version 2.
- Jesper Michael Møller, Rational isomorphisms of $p$-compact groups, Topology 35 (1996), no. 1, 201–225. MR 1367281, DOI 10.1016/0040-9383(94)00005-0 moller97puppreprint —, $PU(p)$ as a $p$-compact group, unpublished manuscript, April 1997, available from http://hopf.math.purdue.edu.
- Jesper M. Møller, Normalizers of maximal tori, Math. Z. 231 (1999), no. 1, 51–74. MR 1696756, DOI 10.1007/PL00004725
- Jesper M. Møller, $N$-determined 2-compact groups. I, Fund. Math. 195 (2007), no. 1, 11–84. MR 2314074, DOI 10.4064/fm195-1-2
- Jesper M. Møller, $N$-determined 2-compact groups. II, Fund. Math. 196 (2007), no. 1, 1–90. MR 2338539, DOI 10.4064/fm196-1-1
- J. M. Møller and D. Notbohm, Centers and finite coverings of finite loop spaces, J. Reine Angew. Math. 456 (1994), 99–133. MR 1301453
- J. M. Møller and D. Notbohm, Connected finite loop spaces with maximal tori, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3483–3504. MR 1487627, DOI 10.1090/S0002-9947-98-02247-8 morgenroththesis H. Morgenroth, Homotopieeindeutigkeit von Produkten Orthogonaler Gruppen, Ph.D. thesis, Göttingen University, 1996, available from http://hopf.math.purdue.edu.
- Mara D. Neusel, Inseparable extensions of algebras over the Steenrod algebra with applications to modular invariant theory of finite groups, Trans. Amer. Math. Soc. 358 (2006), no. 11, 4689–4720. MR 2231868, DOI 10.1090/S0002-9947-05-03801-8
- Dietrich Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), no. 1, 153–168. MR 1106820, DOI 10.1007/BF02571382
- Dietrich Notbohm, Homotopy uniqueness of classifying spaces of compact connected Lie groups at primes dividing the order of the Weyl group, Topology 33 (1994), no. 2, 271–330. MR 1273786, DOI 10.1016/0040-9383(94)90015-9
- D. Notbohm, Spaces with polynomial mod-$p$ cohomology, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 2, 277–292. MR 1670237, DOI 10.1017/S0305004198003284
- D. Notbohm, A uniqueness result for orthogonal groups as 2-compact groups, Arch. Math. (Basel) 78 (2002), no. 2, 110–119. MR 1888011, DOI 10.1007/s00013-002-8223-3
- Dietrich Notbohm, On the 2-compact group $\textrm {DI}(4)$, J. Reine Angew. Math. 555 (2003), 163–185. MR 1956596, DOI 10.1515/crll.2003.010
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914, DOI 10.4153/cjm-1954-028-3
- N. E. Steenrod, The cohomology algebra of a space, Enseign. Math. (2) 7 (1961), 153–178 (1962). MR 160208
- Norman Steenrod, Polynomial algebras over the algebra of cohomology operations, $H$-Spaces (Actes Réunion Neuchâtel, 1970) Lecture Notes in Math., Vol. 196, Springer, Berlin-New York, 1971, pp. 85–99. MR 286100
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, RI, 1968. MR 230728
- Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR 354892, DOI 10.1016/0001-8708(75)90125-5
- Robert Steinberg, The isomorphism and isogeny theorems for reductive algebraic groups, J. Algebra 216 (1999), no. 1, 366–383. MR 1694546, DOI 10.1006/jabr.1998.7776
- J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116 (French). MR 206117, DOI 10.1016/0021-8693(66)90053-6
- Aleš Vavpetič and Antonio Viruel, On the homotopy type of the classifying space of the exceptional Lie group $F_4$, Manuscripta Math. 107 (2002), no. 4, 521–540. MR 1906774, DOI 10.1007/s002290200250
- Aleš Vavpetič and Antonio Viruel, Symplectic groups are $N$-determined 2-compact groups, Fund. Math. 192 (2006), no. 2, 121–139. MR 2283755, DOI 10.4064/fm192-2-3
- Antonio Viruel, Homotopy uniqueness of $B\textrm {G}_2$, Manuscripta Math. 95 (1998), no. 4, 471–497. MR 1618202, DOI 10.1007/s002290050042
- Clarence Wilkerson, Rational maximal tori, J. Pure Appl. Algebra 4 (1974), 261–272. MR 343264, DOI 10.1016/0022-4049(74)90006-1
- Zdzisław Wojtkowiak, On maps from $\textrm {ho}\varinjlim F$ to $\textbf {Z}$, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 227–236. MR 928836, DOI 10.1007/BFb0083013 ziemianski06 K. Ziemiański, A faithful unitary representation of the $2$-compact group $\text {DI}(4)$, preprint (available from http://hopf.math.purdue.edu), 2006.
Bibliographic Information
- Kasper K. S. Andersen
- Affiliation: Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Bygning 1530, DK-8000 Aarhus, Denmark
- Email: kksa@imf.au.dk
- Jesper Grodal
- Affiliation: Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
- Email: jg@math.ku.dk
- Received by editor(s): January 11, 2007
- Published electronically: November 3, 2008
- Additional Notes: The second author was partially supported by NSF grant DMS-0354633, an Alfred P. Sloan Research Fellowship, and the Danish Natural Science Research Council
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 22 (2009), 387-436
- MSC (2000): Primary 55R35; Secondary 55P35, 55R37
- DOI: https://doi.org/10.1090/S0894-0347-08-00623-1
- MathSciNet review: 2476779