
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 22, Number 3, July 2009, Pages 771–796
S 0894-0347(08)00601-2
Article electronically published on April 25, 2008

BOUNDARY STRUCTURE AND SIZE IN TERMS
OF INTERIOR AND EXTERIOR HARMONIC MEASURES

IN HIGHER DIMENSIONS

C. KENIG, D. PREISS, AND T. TORO

1. Introduction

In this work we introduce the use of powerful tools from geometric measure
theory (GMT) to study problems related to the size and structure of sets of mutual
absolute continuity for the harmonic measure ω+ of a domain Ω = Ω+ ⊂ R

n and
the harmonic measure ω− of Ω−, Ω− = int(Ωc) in dimension n ≥ 3. These tools
come mainly from Preiss’ work (see [19]), in which he proved that if the m-density
of a Radon measure µ in R

n exists and is positive and finite, for µ-almost every
point of R

n, then µ is m-rectifiable; see [18] for all the relevant definitions. These
techniques are combined with the blow-up analysis developed by Kenig-Toro [14],
the properties of harmonic functions on non-tangentially accessible (NTA) domains
[11] and the monotonicity formula of Alt-Caffarelli-Friedman [1] to obtain analogs
for n ≥ 3 of some well-known results when n = 2.

Let us first briefly describe some of the 2-dimensional results. Thus, let Ω ⊂
R

2 be a simply-connected domain, bounded by a Jordan curve and let ω be the
harmonic measure associated to Ω (see [9]). Then we can write ∂Ω as a disjoint
union, with the following properties:

(1.1) ∂Ω = G ∪ S ∪ N.

i) ω(N) = 0.
ii) In G, ω � H1 � ω, where Hs denotes an s-dimensional Hausdorff measure.
iii) Every point of G is the vertex of a cone in Ω. Moreover if C denotes the

set of “cone points” of ∂Ω, then H1(C\G) = 0 and ω(C\G) = 0.
iv) H1(S) = 0.
v) S consists (ω a.e.) of “twist points” (a geometrical characterization of S).

See [9] for the definition of a twist point.
vi) For ω a.e. Q ∈ G we have that

lim
r→0

ω(B(Q, r) ∩ ∂Ω)
r

= L exists and 0 < L < ∞.
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vii) At ω a.e. point Q ∈ S we have

lim sup
r→0

ω(B(Q, r) ∩ ∂Ω)
r

= +∞,

lim inf
r→0

ω(B(Q, r) ∩ ∂Ω)
r

= 0.

These results are a combination of work of Makarov, McMillan, Pommerenke
and Choi. See [9] for the precise references.

Recall that the Hausdorff dimension of ω (denote by H− dim ω) is defined by

H− dim ω = inf {k : there exists E ⊂ ∂Ω with Hk(E) = 0 and(1.2)
ω(E ∩ K) = ω(∂Ω ∩ K) for all compact sets K ⊂ R

n}.
Important work of Makarov [17] shows that for simply-connected domains in R

2,
H−dim ω = 1, establishing Oksendal’s conjecture in dimension 2. Carleson [6], and
Jones and Wolff [12] proved that, in general, for domains in R

2 with a well-defined
harmonic measure ω, H − dimω ≤ 1. T. Wolff [21] showed, by a deep example,
that for n ≥ 3, Oksendal’s conjecture (H − dimω = n − 1) fails. He constructed
what we will call “Wolff snowflakes”, domains in R

3 for which H− dimω > 2 and
others for which H−dim ω < 2. In Wolff’s construction, the domains have a certain
weak regularity property: they are non-tangentially accessible domains (NTA) in
the sense of [11]. In fact, they are 2-sided NTA domains (i.e. Ω and int(Ωc) are
both NTA), and this plays an important role in his estimates. Here, whenever
we refer to a “Wolff snowflake,” we will mean a 2-sided NTA domain in R

n, for
which H − dimω 	= n − 1. In [16], Lewis, Verchota and Vogel reexamined Wolff’s
construction and were able to produce “Wolff snowflakes” in R

n, n ≥ 3, for which
H−dim ω± > n−1, and others for which H−dim ω± < n−1. They also observed,
as a consequence of the monotonicity formula in [1], that if ω+ � ω− � ω+, then
H− dimω± ≥ n − 1.

Returning to the case of n = 2, when Ω is again simply connected, bounded by
a Jordan curve, ω+ = ω and ω− equals the harmonic measure for int(Ωc), Bishop,
Carleson, Garnett and Jones [4] showed that, if E ⊂ ∂Ω, ω+(E) > 0, ω−(E) > 0,
then ω+ ⊥ ω− on E if and only if H1(Tn(∂Ω) ∩ E) = 0, where Q ∈ Tn(∂Ω) ⊂ ∂Ω
if ∂Ω has a unique tangent line at Q. Recall that ∂Ω admits a decomposition
relative to ω±, ∂Ω = G± ∪ S± ∪ N± (see (1.1)). Let E ⊂ ∂Ω be such that
ω+ � ω− � ω+ on E and ω±(E) > 0; then, because of [4], modulo sets of ω±

measure 0, E ⊂ Tn(∂Ω). Using Beurling’s inequality, i.e. the fact that for Q ∈ ∂Ω
and r > 0, ω+(B(Q, r))ω−(B(Q, r)) ≤ Cr2, and the characterization above for G±

and S± (see ii), vi) and vii)) we conclude that ω+ � H1 � ω− � ω+ on E. Thus,
sets of mutual absolute continuity of ω−, ω+ are “regular” and hence obviously of
dimension 1.

In [3], motivated by this last result, Bishop asked whether in the case of R
n, n ≥

3, if ω−, ω+ are mutually absolutely continuous on a set E ⊂ ∂Ω, ω±(E) > 0, then
ω± are mutually absolutely continuous with respect to Hn−1 on E (modulo a set of
ω± measure zero) and hence dimH(E) = n−1. On the other hand, Lewis, Verchota
and Vogel [16] conjectured that there are “Wolff snowflakes” in R

n, n ≥ 3, with
H− dimω± > n− 1, for which ω+, ω− are not mutually singular. In this paper we
study these issues for domains which verify the weak regularity hypothesis of being
2-sided locally NTA (a condition which, of course, Wolff snowflakes verify). This
condition ensures that we have scale invariant estimates for harmonic measures. In
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the n = 2 case, the condition is equivalent to locally being a quasi-circle, but it is
weaker than that when n > 2. We expect that versions of our results will still be
valid under even weaker regularity assumptions. We would like to stress though
that no flatness assumption is made in this work; that has been one of the main
points that we wanted to address here, as well as the introduction of the techniques
from GMT ([19]), combined with the blow-up analysis in [14].

Our main result is that, for n ≥ 3, ∂Ω = Γ∗ ∪ S ∪ N , where ω+ ⊥ ω− on S,
ω±(N) = 0, and on Γ∗, ω+ � ω− � ω+, dimH Γ∗ ≤ n − 1, and if ω±(Γ∗) > 0,
dimH Γ∗ = n − 1, where dimH denotes the Hausdorff dimension of a set. As a
consequence there can be no “Wolff snowflake” for which ω+, ω− are mutually
absolutely continuous. We also show that Γ∗ = Γ∗

g ∪ Γ∗
b ∪ Z, ω±(Z) = 0, where in

Γ∗
g, Hn−1 is σ-finite, ω− � Hn−1 � ω+ � ω−, while on Γ∗

b , for a Borel set E we
have that if ω±(Γ∗

b ∩E) > 0, then Hn−1(Γ∗
b ∩E) = +∞. If we further assume that

Hn−1 ∂Ω is a Radon measure, then we show that Γ∗ is (n−1) rectifiable. In this
case, we must have ω±(Γ∗

b) = 0, and hence ∂Ω = Γ∗
g ∪ S ∪ Ñ , ω±(Ñ) = 0 and Γ∗

g

is rectifiable.
Our approach is the following. Using the blow-up analysis developed in [14], at

ω± a.e. point on the set where ω+ and ω− are mutually absolutely continuous, the
tangent measures to ω± (in the sense of [19], [18]) are harmonic measures associated
to the zero set of a harmonic polynomial (see Theorem 3.4). Using the fact that for
almost every point a tangent measure to a tangent measure is a tangent measure,
(see [18]) and the fact that the zero set of a harmonic polynomial is smooth except
for a set of Hausdorff dimension n − 2 (see [10]), one shows that at ω± a.e. point
on this set, (n − 1) flat measures always arise as tangent measures to ω±. They
correspond to linear harmonic polynomials. We then show, and this is the crucial
step, that if one tangent measure is flat, on the set of mutual absolute continuity,
then all tangent measures are flat (see Theorem 4.1). To accomplish this we use a
connectivity argument from [19]. The key point is that if a tangent measure is not
flat, being the harmonic measure associated to the zero set of a harmonic polynomial
of degree higher than 1, its tangent measure at infinity is far from flat (see Lemma
4.1), and a connectivity argument in d-cones of measures, in the metric introduced
by Preiss in [19], gives a contradiction. Modulo a set of ω± measure 0, let Γ∗ be
the points in the set of mutual absolute continuity for which one (and hence all)
tangent measures are (n−1) flat. An easy argument (see Lemma 2.4 and the proof
of Theorem 4.1) shows that dimH Γ∗ ≤ n−1. To conclude that if ω±(Γ∗) > 0, then
dimH Γ∗ = n − 1, one uses the Alt-Caffarelli-Friedman monotonicity formula of [1]
as in [16]. If Hn−1 ∂Ω is a Radon measure, one can show that its density on Γ∗

is 1, Hn−1 ∂Ω a.e., which shows that Γ∗ is (n − 1) rectifiable (see [18]).
The results in Theorem 2.1 and Corollary 2.1 are very general. We believe they

should be useful in other situations where questions of size and structure of the
support of a measure arise.

2. Some results in geometric measure theory

We start this section with some basic definitions in GMT. Then we recall two
families of “distances” between Radon measures in Euclidean space which are com-
patible with weak convergence. They were initially introduced in [19]. We finish
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the section with a general theorem which can be used to derive geometric proper-
ties of two domains’ common boundary from comparisons between their harmonic
measures.

Recall that if Φ is a Radon measure in R
n, then

(2.1) spt Φ = {x ∈ R
n : Φ(B(x, r)) > 0 ∀ r > 0}.

Definition 2.1. Let Φ and Ψ be Radon measures in R
n. Let K be a compact set

in R
n and define

i) FK(Φ) =
∫

dist (z, Kc) dΦ(z).

ii) If FK(Φ) + FK(Ψ) < ∞, let

(2.2) FK(Φ, Ψ) = sup
{∣∣∣∣∫ fdΦ −

∫
fdΨ

∣∣∣∣ : spt f ⊂ K, f ≥ 0, Lipf ≤ 1
}

.

We denote by Fr(Φ) = FB(0,r)(Φ). Note that FK(Φ) = FK(Φ, 0).

Remark 2.1. Let Φ be a Radon measure in R
n. For x ∈ R

n and r > 0 define
Tx,r : R

n → R
n by the formula Tx,r(z) = (z − x)/r. Note that:

i) Tx,r[Φ](B(0, s)) := Φ(T−1
x,r (B(0, s))) = Φ(B(x, sr)) for every s > 0.

ii)
∫

f(z)dTx,r[Φ](z) =
∫

f

(
z − x

r

)
dΦ(z) whenever at least one of these

integrals is defined.
iii) FB(x,r)(Φ) = rF1(Tx,r[Φ]).
iv) FB(x,r)(Φ, Ψ) = rF1(Tx,r[Φ], Tx,r[Ψ]).

Definition 2.2. Let µ, µ1, µ2, . . . be Radon measures on R
n. We say that µi → µ

or limi→∞ µi = µ if
i) lim supi→∞ FK(µi) < ∞ for every compact set K ⊂ R

n.
ii) limi→∞ FK(µi, µ) = 0 for every compact set K ⊂ R

n.

Definition 2.3. Let µ, µ1, µ2, . . . be Radon measures on R
n. We say that {µi}

converges weakly to µ, µi ⇀ µ if

(2.3) lim
r→∞

∫
fdµ :=

∫
fdµ ∀φ ∈ Cc(Rn).

Lemma 2.1 ([19], Proposition 1.11). Let µ1, µ2 . . . and µ be Radon measures on
R

n such that lim supi→∞ µi(K) < ∞ for each compact set K in R
n. Then µi → µ

if and only if µi ⇀ µ.

Lemma 2.2 ([18], Lemma 14.13). Let µ1, µ2, . . . and µ be Radon measures on R
n.

Then µi → µ if and only if

(2.4) lim
i→∞

Fr(µi, µ) = 0 ∀ r > 0.

We now introduce a scale invariant relative of Fr, which behaves well under weak
convergence and scaling.

Definition 2.4 ([19], §2).

i) A set M of non-zero Radon measures in R
n will be called a cone if cΨ ∈ M

whenever Ψ ∈ M and c > 0.
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ii) A cone M will be called a d-cone if T0,r[Ψ] ∈ M whenever Ψ ∈ M and
r > 0.

iii) Let M be a d-cone and Φ a Radon measure in R
n such that for s > 0,

0 < Fs(Φ) < ∞, we define the distance between Φ and M by

(2.5) ds(Φ,M) = inf
{

Fs

(
Φ

Fs(Φ)
, Ψ

)
: Ψ ∈ M and Fs(Ψ) = 1

}
.

We also define

(2.6) ds(Φ,M) = 1 if Fs(Φ) = 0 or Fs(Φ) = +∞.

Remark 2.2. Note that if M is a d-cone and Φ is a Radon measure,
i) ds(Φ,M) ≤ 1,
ii) ds(Φ,M) = d1(T0,s[φ],M),
iii) if µ = lim

i→∞
µi and Fs(µ) > 0, then ds(µ,M) = lim

i→∞
ds(µi,M).

In fact if µ = lim
i→∞

µi, then by Lemma 2.1 µi ⇀ µ and for s > 0

(2.7) Fs(µi) =
∫

(s − |z|)+dµi →
∫

(s − |z|)+dµ = Fs(µ).

Thus without loss of generality we may assume that Fs(µi) > 0 (at least for i large
enough). Since lim

i→∞
µi = µ then lim sup

i→∞
Fs(µi) < ∞ and therefore Fs(µ) < ∞. Let

Ψ ∈ M such that Fs(Ψ) = 1; then

Fs

(
µ

Fs(µ)
, Ψ

)
≤ Fs

(
µ

Fs(µ)
,

µi

Fs(µ)

)
+ Fs

(
µi

Fs(µ)
,

µi

Fs(µi)

)
(2.8)

+Fs

(
µi

Fs(µi)
, Ψ

)
≤ 1

Fs(µ)
Fs(µ, µi) + Fs(µi)

∣∣∣∣ 1
Fs(µ)

− 1
Fs(µi)

∣∣∣∣
+Fs

(
µi

Fs(µi)
, Ψ

)
.

Thus for any Ψ ∈ M with Fs(Ψ) = 1 we have

(2.9) ds(µ,M) ≤ 1
Fs(µ)

Fs(µ, µi) + Fs(µ)
∣∣∣∣ 1
Fs(µ)

− 1
Fs(µi)

∣∣∣∣ + Fs

(
µ

Fs(µi)
, Ψ

)
which implies

(2.10) ds(µ,M) ≤ Fs(µ, µi)
Fs(µ)

+ Fs(µ)
∣∣∣∣ 1
Fs(µ)

− 1
Fs(µi)

∣∣∣∣ + ds(µi,M).

Letting i → ∞ and combining (2.4) and (2.7) we have that

(2.11) ds(µ,M) ≤ lim inf
i→∞

ds(µi,M).

A similar calculation done reversing the roles of µ and µi yields the inequality

(2.12) lim sup
i→∞

ds(µi,M) ≤ ds(µ,M)

which proves statement iii) in Remark 2.2.
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Definition 2.5.

i) Let η be a Radon measure in R
n. Let x ∈ R

n; a non-zero Radon measure
ν in R

n is said to be a tangent measure of η at x if there are sequences
rk ↘ 0 and ck > 0 such that ν = lim

k→∞
ckTx,rk

[η].

ii) The set of all tangent measures to η at x is denoted by Tan (η, x).

Remark 2.3. For η a non-zero Radon measure and x ∈ R
n, Tan (η, x) is a d-cone.

Moreover {ν ∈ Tan (η, x) : F1(ν) = 1} is closed under weak convergence (see [19]
2.3).

Definition 2.6. The basis of a d-cone M of Radon measures is the set {Ψ ∈ M :
F1(Ψ) = 1}. We say that M has a closed (respectively compact) basis if its basis
is closed (respectively compact) in the topology induced by the metric

∞∑
p=0

2−p min{1, Fp(Φ, Ψ)}

defined for Radon measures Ψ and Φ.

Proposition 2.1 ([19], Proposition 1.12). The set of Radon measures on R
n with

the metric above is a complete separable metric space.

Remark 2.4.

i) As indicated in 1.9(4), Proposition 1.12 and Proposition 1.11 of [19] the
notion of convergence in this metric coincides with the notion of weak con-
vergence of Radon measures.

ii) A d-cone of Radon measures in R
n has a closed basis if and only if it is a

relatively closed subset of the set of non-zero Radon measures in R
n.

Proposition 2.2 ([19], Proposition 2.2). Let M be a d-cone of Radon measures.
M has a compact basis if and only if for every λ ≥ 1 there is τ > 1 such that
Fτr(Ψ) ≤ λFr(Ψ) for every Ψ ∈ M and every r > 0. In this case 0 ∈ spt Φ for all
Ψ ∈ M.

The following theorem is in the same vein as Theorem 2.6 in [19].

Theorem 2.1. Let F and M be d-cones. Assume that F ⊂ M, that F is relatively
closed with respect to the weak convergence of Radon measures and that M has a
compact basis. Furthermore suppose that the following property holds:

(P)
{

∃ ε0 > 0 such that ∀ ε ∈ (0, ε0) there exists no µ ∈ M satisfying
dr(µ,F) ≤ ε ∀r ≥ r0 > 0 and dr0(µ,F) = ε.

Then for a Radon measure η and x ∈ spt η if

(2.13) Tan (η, x) ⊂ M and Tan (η, x) ∩ F 	= ∅, then Tan (η, x) ⊂ F .

Corollary 2.1. Let F and M be d-cones. Assume that F ⊂ M, that F is relatively
closed with respect to the weak convergence of Radon measures and that M has a
compact basis. Furthermore suppose that there exists ε0 > 0 such that if dr(µ,F) <
ε0 for all r ≥ r0 > 0, then µ ∈ F . Then for a Radon measure η and x ∈ spt η if

(2.14) Tan (η, x) ⊂ M and Tan (η, x) ∩ F 	= ∅, then Tan (η, x) ⊂ F .
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Note that the condition stated in Corollary 2.1 is stronger than condition (P),
and a simple argument shows it.

Proof of Theorem 2.1. We proceed by contradiction; i.e. assume that Tan (η, x) ⊂
M, Tan (η, x) ∩ F 	= ∅ but there exists ν ∈ Tan (η, x)\F . Since F is closed there
exists ε1 ∈ (0, 1

2 min{ε0, 1}) such that d1(η,F) > 2ε1. Moreover there exist si ↘ 0
and ci > 0 such that ciTx,si

[η] → ν. Since Tan (η, x)∩F 	= ∅ there also exist δi > 0
and ri ↘ 0 such that δiTx,ri

[η] → ν̃ ∈ F . Thus for i large enough

(2.15) d1(Tx,ri
[η],F) = d1(δiTx,ri

[η],F) < ε1 and d1(Tx,si
[η],F) > ε1.

Without loss of generality we may assume that si < ri. Let τi ∈
(

si

ri
, 1

)
be the

largest number such that τiri = ρi satisfies

(2.16) d1(Tx,ρi
[η],F) = ε1.

Hence for all α ∈ (τi, 1)

(2.17) d1(Tx,αri
[η],F) = dα/τi

(Tx,ρi
[η],F) < ε1.

We claim that τi → 0 as i → ∞. In fact, otherwise there exists a subsequence
τik

→ τ ∈ (0, 1), and δik
Tx,ρik

[η] = δik
Tx,τik

rik
[η] → T0,τ [ν̃] ∈ F , which implies

that d1(Tx,ρik
[η],F) → 0 as ik → ∞, which contradicts (2.16). Therefore (2.16)

and (2.17) yield

(2.18) lim
i→∞

d1(Tx,ρi
[η],F) = ε1,

and for every r > 1,

(2.19) lim sup
i→∞

dr(Tx,ρi
[η],F) ≤ ε1.

Note that Fr(Tx,ρi
[η]) = 1

ρi
FB(x,rρi)(η) ∈ (0,∞) for x ∈ spt η. Moreover a simple

calculation shows that for i large enough

(2.20) 0 <
r

2
η

(
B

(
x,

rρi

2

))
≤ Fr(Tx,ρi

[η]) ≤ rη(B(x, rρi)) ≤ rη(B(x, r)) < ∞.

Since ε1 < 1, λ = 2
1+ε1

> 1, and by Proposition 2.2 there is τ > 1 so that
Fτr(Ψ) ≤ λFr(Ψ) for every Ψ ∈ M and every r > 0. For r ≥ 1 and i large enough
there is Ψ ∈ M so that Fτr(Ψ) = 1 and

(2.21) Fr

(
Tx,ρi

[η]
Frτ (Tx,ρi

[η])
, Ψ

)
≤ Fτr

(
Tx,ρi

[η]
Frτ (Tx,ρi

[η])
, Ψ

)
≤ ε1.

Hence

(2.22)
Fr(Tx,ρi

[η])
Fτr(Tx,ρi

[η])
≥ Fr(Ψ) − ε1 ≥ 1 + ε1

2
Fτr(Ψ) − ε1 =

1 − ε1
2

.

Thus for p = 1, 2, . . . (2.22) yields

(2.23)
Fτp(Tx,ρi

[η])
F1(Tx,ρi

[η])
≤

(
1 − ε1

2

)−p

.

Combining (2.20), (2.23) and i) in Remark 2.1 we conclude that for p = 1, 2, . . . ,
τ > 1 (as above) and i large enough,

(2.24)
Tx,ρi

[η](B(0, τp/2))
F1(Tx,ρi

[η])
≤ 2

(
2

1 − ε1

)p

τ−p ≤ 2
(

2
(1 − ε1)τ

)p

.
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Thus for any s > 0, (2.24) ensures that

(2.25) lim sup
i→∞

Tx,ρi
[η](B(0, s))

F1(Tx,ρi
[η])

< ∞.

By the compactness theorem for Radon measures there exists a subsequence ik such

that
Tx,ρik

[η]

F1(Tx,ρi
[η]) converges to a Radon measure Φ ∈ M (as M has a closed basis),

satisfying F1(Φ) = 1. Therefore Fr(Φ) > 0 for r ≥ 1.
Combining iii) in Remark 2.2 with (2.18) and (2.19) we have that

(2.26) d1(Φ,F) = ε1

and

(2.27) dr(Φ,F) ≤ ε1 for all r > 1.

Since ε1 < ε0/2, (2.26) and (2.27) contradict condition (P). This concludes the
proof of Theorem 2.1.

We next recall a couple of results from [19] and [18]. They provide additional
information about Tan (Φ, x) for a Radon measure Φ and for x ∈ spt Φ. The first
result yields conditions that ensure that Tan (Φ, x) has a compact basis. As we
will see these conditions are satisfied by the harmonic measures considered in this
paper. The second result states that tangent measures to tangent measures of Φ
are tangent measures of Φ.

Theorem 2.2 ([19], Corollary 2.7). Let Φ be a Radon measure in R
n, and let

x ∈ spt Φ. Then Tan (Φ, x) has a compact basis if and only if

(2.28) lim sup
r→0

Φ(B(x, 2r))
Φ(B(x, r))

< ∞.

Theorem 2.3 ([18], Theorem 14.16). Let Φ be a Radon measure in R
n. Then Φ

a.e. a ∈ R
n, if Ψ ∈ Tan (Φ, a),

i) Tx,ρ[Ψ] ∈ Tan (Φ, a) for all x ∈ spt Ψ and all ρ > 0.
ii) Tan (Ψ, x) ⊂ Tan (Φ, a) for all x ∈ spt Ψ.

Finally we present a couple of results which will be used later in the paper.

Definition 2.7. A Radon measure ω in R
n is said to be locally doubling if for

every compact set K ⊂ spt ω there exists C = Ck ≥ 1 and RK = R > 0 such that
for Q ∈ K and s ∈ (0, R),

(2.29) ω(B(Q, 2s)) ≤ Cω(B(Q, s)).

Lemma 2.3. Let ω be a locally doubling measure in R
n. Let Ψ be a non-zero Radon

measure with Ψ ∈ Tan (ω, Q). There exists a sequence of positive numbers {ri}i≥1

with lim
i→∞

ri = 0 such that ri
−1(spt ω − Q) converges to spt Ψ in the Hausdorff

distance sense uniformly on compact sets.

Proof. Since Ψ ∈ Tan (ω, Q) and ω is locally doubling by Remark (3) in 14.4 of
[18], we have that there are a sequence ri ↓ 0 and a positive constant c such
that Ψ = c lim

i→∞
ω(B(Q, ri))−1TQ,ri

[ω]. Let X = lim
i→∞

Xi ∈ B(0, R0) where Xi =

r−1
i (Zi −Q) with Zi ∈ spt ω. For r ∈ (0, 1) there exists i0 ≥ 1 such that for i ≥ i0,
|X − Xi| < r

2 and |Zi − Q| ≤ ri|Xi| ≤ ri(|X| + 1) ≤ R0 + 1. Since ω is locally
doubling there exists C0 ≥ 1 and R > 0 such that for P ∈ B(Q, 2(R0 + 1)) and
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s < R, ω(B(P, 2s)) ≤ C0ω(B(P, s)). Thus for r ≤ min{R, 1} and i large enough so
that ri(R0 + 1) < R, we have

TQ,ri
[ω](B(x, r))

ω(B(Q, ri))
=

ω(B(Q + riX, rri))
ω(B(Q, ri))

(2.30)

≥ ω(B(Q + riXi, ri(r − |X − Xi|))
ω(B(Q, ri))

≥
ω(B(Zi,

rri

2 ))
ω(B(Zi, ri(R0 + 2)))

≥ Ck
0 > 0,

where k ∈ N is such that 2−k(R0 + 2) ≤ r
2 < 2−(k−1)(R0 + 2). Thus

Ψ(B(x, 2r)) ≥ Ψ(B(x, r))(2.31)

≥ lim sup
i→∞

c
Ta,ri

[ω](B(x, r))
ω(B(Q, ri))

≥ Ck
0 > 0.

Thus (2.31) ensures that x ∈ spt Ψ. This shows that lim
i→∞

r−1
i (spt ω − Q) ⊂

spt Ψ. To show the opposite inclusion assume that for X 	∈ lim
i→∞

r−1
i (spt ω − Q)

there exists {rik
} ⊂ {ri}, rik

↘ 0 such that d(X, r−1
ik

(spt ω − Q)) ≥ ε0. Thus
B(x, ε0

2 ) ∩ r−1
ik

(spt ω − Q) = ∅. For ϕ ∈ C∞
c (B(X, ε0

2 )) we have

(2.32)
∫

ϕdΨ = C lim
ik→∞

1
ω(B(Q, rik

))

∫
ϕ

(
Y − Q

rik

)
dω = 0,

which ensures that X 	∈ spt Ψ. �

The following lemma is a simple geometric measure theory fact which allows us
to give an estimate on the Hausdorff dimension of sets which approach (n−1)-planes
locally.

Lemma 2.4. Let Σ ⊂ R
n be such that ∀Q ∈ Σ

(2.33) lim
r→0

βΣ(Q, r) = 0, where βΣ(Q, r) = inf
L∈G(n,n−1)

sup
y∈B(Q,r)∩Σ

d(y, L)
r

.

Then

(2.34) dimH Σ ≤ n − 1.

The following proof is an adaptation of the argument used in [20] to prove Lemma
3 in Chapter 3, §4 of [20].

Proof. Let Q ∈ Σ. Given ε > 0, there exists rQ,ε > 0 such that for r < rQ,ε there
exists an (n − 1)-plane L(Q, r) through Q so that

(2.35) Σ ∩ B(Q, r) ⊂ (L(Q, r) ∩ B(Q, r); εr).

Note that for ε > 0

(2.36) Σ =
∞⋃

j=1

Σj , where Σj = {Q ∈ Σ : rQ,ε >
10
2j

}.

Without loss of generality we may assume that 0 ∈ Σ. Let k ∈ N. For j0 ≥ 1 cover
Σj0 ∩ B(0, k) by sets {Cs}s≥1 of diameter less than δ > 0. Choosing δ < 1

2j0 we
can ensure that each such set is contained in a ball of center Q ∈ Σj0 and radius
rQ = diamCs for some s with Q ∈ Cs less than δ, i.e. rQ < 1

10rQ,ε. Note that
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B(Q, rQ) ∩ L(Q, rQ) can be covered by Nε−n+1 balls {Bl}l centered in L(Q, rQ)
with radius 5εrQ and such that the balls of the same center and radius εrQ are
disjoint. Here N > 0 is an absolute constant that only depends on n. Thus for
γ > 0

(2.37)
∑

l

( diam Bl)n−1+γ = (5εrQ)n−1+γNε−n+1 = 5n−1εγNrn−1+γ
Q .

Note that if γ ≥ − ln(4N5n−1)
ln(5ε) , then

(2.38)
∑

l

( diamBo)n−1+γ ≤ 1
4
rn−1+γ
Q .

Thus for δ < 1
2j0

(2.39) Hn−1+γ
5εδ (Σj0 ∩ B(0, k)) ≤ 1

4
Hn−1+γ

δ (Σj0 ∩ B(0, k)).

Letting δ → 0 we conclude that ∀ j ∈ N and γ ≥ − ln(4N5n−1)/ ln(5ε),

(2.40) Hn−1+γ(Σj ∩ B(0, k)) = 0.

Thus (2.36) ensures that

(2.41) Hn−1+γ(Σ ∩ B(0, k)) = 0

for γ ≥ − ln(4N5n−1)
ln(5ε) and ε > 0. Letting ε → 0 we conclude that

Hn−1+γ(Σ ∩ B(0, k)) = 0 for all γ > 0 and hence Hn−1+γ(Σ) = 0 also. This
implies that dimH Σ ≤ n − 1. �

3. Two-sided locally non-tangentially accessible domains

Definition 3.1. A domain Ω ⊂ R
n is admissible if

• Ω+ = Ω and ω− = int ωc are regular for the Dirichlet problem.
• ∂Ω+ = ∂Ω− = ∂Ω.
• There exist points X± ∈ Ω± such that for every point Q ∈ ∂Ω there exists

0 < R < min{δ(X+), δ(X−)} satisfying u ∈ C0(B(Q, R))∩W 1,2(B(Q, R)),
where δ(X) = dist (X, ∂Ω)),

u(X) = G+(X, X+) for X ∈ Ω+,(3.1)

u(X) = −G−(X, X−) for X ∈ Ω−

and G±(−, X±) denotes the Green function of Ω± with pole at X±.

Notation. If Ω is admissible so is int Ωc. Let Ω be an admissible domain; we
denote by ω± the harmonic measure of Ω± with pole X±. Note that in this case
u± = G±(−, X±).

The monotonicity formula of Alt, Caffarelli and Freidman plays a role in this
work. We recall several of the results which will be used later.



BOUNDARY STRUCTURE IN HIGHER DIMENSIONS 781

Theorem 3.1 ([1]). Let Ω be an admissible domain. Then for Q ∈ ∂Ω there exists
0 < R < min{δ(X+), δ(X−)} such that the quantity

(3.2) γ(Q, r) =

(
1
r2

∫
B(Q,r)

|∇u+|2
|X − Q|n−2

dX

)
·
(

1
r2

∫
B(Q,r)

|∇u−|2
|X − Q|n−2

dX

)

is an increasing function of r for r ∈ (0, R) and γ(Q, R) < ∞.

Note that the ACF-monotonicity formula ensures that

(3.3) γ(Q) = lim
r→0

γ(Q, r)

exists and is a non-negative finite quantity. A combination of the results of Alt-
Caffarelli-Friedman, Beckner-Kenig-Pipher and Brothers-Ziemer asserts that if
γ(Q) > 0, then all blow-ups of the boundary at Q are (n − 1)-planes (see [1],
[2] and [5]). This last fact will not be used here.

Our immediate goal is to estimate γ(Q, r) in terms of ω± and u±. Let ϕ ∈
C∞

c (Rn). The harmonic extension vϕ of ϕ to Ω (i.e. ∆vϕ = 0 in Ω and vϕ = ϕ in
∂Ω) satisfies for u /∈ spt ϕ

(3.4) vϕ(Y ) = −
∫
〈∇G(Y, X),∇ϕ(X)〉 dX.

Let R < min{δ(X+), δ(X−)}, 2r < R, Q ∈ ∂Ω and ϕ = 1 on B(Q, 3r
2 ), ϕ = 0

on B(Q, 2r)c, 0 ≤ ϕ ≤ 1 and |∇ϕ| ≤ C
r . By the maximum principle v±ϕ (X±) ≥

ω±(B(Q, r)). Here v±ϕ denotes the harmonic extension of ϕ to Ω±. Hence by (3.4)
we have

ω±(B(Q, r)) ≤ C

r

∫
B(Q,2r)\B(Q,r)

|∇u±|(3.5)

≤ C

r

(∫
B(Q,2r)\B(Q,r)

|∇u±|2
|X − Q|n−2

)1/2

·
(∫

B(Q,2r)\B(Q,r)

|X − Q|n−2

)1/2

,

which yields

(3.6)
ω±(B(Q, r))

rn−1
≤ C

(
1
r2

∫
B(Q,2r)\B(Q,r)

|∇u±|2
|X − Q|n−2

)1/2

and

(3.7)
ω+(B(Q, r))

rn−1
· ω−(B(Q, r))

rn−1
≤ Cγ(Q, 2r)1/2.

Note that ∆(u±)2 = 2|∇u±|2 ≥ 0 because u± is zero on the support of the
measure ∆u±. Using Cacciopoli’s inequality as well as the fact that (u±)2 is sub-
harmonic (and therefore the averages over spheres are increasing as a function of
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the radius) we have for Q ∈ ∂Ω that∫
B(Q,r)

|∇u±|2
|X − Q|n−2

=
1
2

∫
B(Q,r)

∆(u±)2

|X − Q|n−2
(3.8)

= Cn(u±)2(Q) +
1

rn−2

∫
∂B(Q,r)

u± ∂u±

∂r
+

n − 2
2rn−1

∫
∂B(Q,r)

(u±)2

=
1

rn−2

∫
B(Q,r)

|∇u±|2 +
n − 2
2rn−1

∫
∂B(Q,r)

(u±)2

≤ C
1
rn

∫
B(Q,2r)

(u±)2 +
n − 2
2rn−1

∫
∂B(Q,r)

(u±)2

≤ C
1
rn

∫
B(Q,2r)

(u±)2 +
n − 2
2rn

∫ 2r

r

(∫
∂B(Q,s)

(u±)2
)

ds

≤ C
1
rn

∫
B(Q,2r)

(u±)2.

We have proved the following result:

Lemma 3.1. Assume given Ω ⊂ R
n, an admissible domain. Let R < min{δ(X+),

δ(X−)}, 4r < R, and Q ∈ ∂Ω; then
(3.9)

ω±(B(Q, r))
rn−1

≤ C

(
1
r2

∫
B(Q,2r)

|∇u±|2
|X − Q|n−2

)1/2

≤ C

(
1

rn+2

∫
B(Q,4r)

(u±)2
)1/2

.

Therefore
ω+(B(Q, r))

rn−1
· ω−(B(Q, r))

rn−1
≤ Cγ(Q, 2r)1/2(3.10)

γ(Q, 2r) ≤ C

(
1

rn+2

∫
B(Q,4r)

(u+)2
)

·
(

1
rn+2

∫
B(Q,4r)

(u−)2
)

.

Remark 3.1. For Q0 ∈ ∂Ω, r0 < R
8 and Q ∈ B

(
Q0,

r0
2

)
∩ ∂Ω, we have for r < r0

2 ,

γ(Q, r) ≤ γ
(
Q,

r0

2

)
(3.11)

≤ C

(
1

rn+2
0

∫
B(Q,r0)

(u+)2
)

·
(

1
rn+2
0

∫
B(Q,r0)

(u−)2
)

.

Moreover

(3.12)
ω+(B(Q, r))

rn−1
· ω−(B(Q, r))

rn−1
≤ Cγ(Q, 2r)

1
2 ≤ C

rn+2
0

‖u‖2
L2(B(Q0,4r0)).

Here C only depends on n. Thus Beurling’s inequality (see [9] Chapter IV, Theorem
6.2 and Chapter VI, proof of Theorem 6.3) holds in higher dimensions.

Definition 3.2. A domain Ω ⊂ R
n satisfies the corkscrew condition if for each

compact set K ⊂ R
n there exists R > 0 such that for Q ∈ ∂Ω ∩ K and r ∈ (0, R]

there exists A = A(Q, r) ∈ Ω such that M−1r < |A−Q| < r and d(A, ∂Ω) > M−1r.
If Ω is unbounded we require that R = ∞.
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Definition 3.3. A domain Ω ⊂ R
n is locally non-tangentially accessible (NTA) if

(1) Ω± satisfies the corkscrew condition.
(2) Harnack Chain Condition. Given a compact set K ⊂ R

n, there exists R =
RK > 0 and M = MK > 1 such that if ε > 0, and X1, X2 ∈ Ω∩B(Q, r

4 ) for
some Q ∈ ∂Ω∩K, r < R, d(Xj , ∂Ω) > ε and |X1−X2| < 2kε, then there ex-
ists a Harnack chain from X1 to X2 of length Mk and such that the diameter
of each ball is bounded below by M−1 min{ dist (X1, ∂Ω), dist (X2, ∂Ω)}. If
Ω is unbounded we require that R = ∞.

If Ω is bounded and locally NTA, then Ω is NTA as defined in [11].
In particular since most of the results concerning the behaviour of non-negative

harmonic measures on NTA domains are local, suitable modifications hold for lo-
cally NTA domains. We briefly summarize the most important ones in the current
context.

Lemma 3.2 ([11], Lemma 4.1). Let Ω be a locally NTA domain. Given a compact
set K ⊂ R

n, there exists β > 0 such that for all Q ∈ ∂Ω ∩ K, 0 < 2r < RK , and
every positive harmonic function u in Ω ∩ B(Q, 2r), which vanishes continuously
on B(Q, 2r), then for X ∈ Ω ∩ B(Q, r)

(3.13) u(X) ≤ C

(
|X − Q|

r

)β

sup{u(Y ) : Y ∈ ∂B(Q, 2r) ∩ Ω}.

Here C only depends on K.

Lemma 3.3 ([11], Lemma 4.4). Let Ω be a locally NTA domain. Given a compact
set K ⊂ R

n and 0 < 2r < RK , if u ≥ 0 is a harmonic function in Ω ∩ B(Q, 4r)
and u vanishes continuously on B(Q, 2r) ∩ ∂Ω, then, for Q ∈ ∂Ω ∩ K,

(3.14) u(Y ) ≤ Cu(A(Q, r))

for all Y ∈ B(Q, r) ∩ Ω. Here C only depends on K.

Lemma 3.4 ([11], Lemma 4.8). Let Ω be a locally NTA domain. Given a compact
set K ⊂ R

n, for Q ∈ ∂Ω ∩ K, 0 < 2r < RK and X ∈ Ω\B(Q, 2r), then

(3.15) C−1 <
ωX(B(Q, r))

rn−2G(A(Q, r), X)
< C,

where G(A(Q, r), X) is the Green function of Ω with pole X.

Lemma 3.5 ([11], Lemmas 4.8, 4.11). Let Ω be a locally NTA domain. Given a
compact set K ⊂ R

n, if M > 1 and R > 0 are as in Definition 3.3 for Q ∈ ∂Ω∩K,
0 < 2r < R, and X ∈ Ω\B(Q, 2Mr), then for s ∈ [0, r]

(3.16) ωX(B(Q, 2s)) ≤ CωX(B(Q, s)),

where C ≥ 1 only depends on K.

Definition 3.4. A domain Ω ⊂ R
n is 2-sided locally non-tangentially accessible if

Ω± are both locally NTA.

Lemma 3.6. Let Ω ⊂ R
n be a 2-sided locally NTA domain; then Ω is an admissible

domain.
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Proof. Lemmas 3.2 and 3.3 ensure that there exists M > 1 depending on the NTA
constants of Ω± such that for X± ∈ Ω± and for r < 1

M min{δ(X+), δ(X−)}, if
X ∈ Ω± ∩ B(Q, r), then

(3.17) G±(X, X±) ≤ CG±(A±(Q, r), X±)
(

δ(X)
R

)β

,

where β and C depend on n and the NTA constants of Ω±.
Thus u = G+(−, X+) − G−(−, X−) ∈ C0(B(Q, R)). Recall that for X ∈

B(Q, r) ∩ Ω±

(3.18) |∇G±(X, X±)| ≤ Cn
G±(X, X±)

δ(X)
.

We claim that there exist η > 0 and R ∈ (0, R0) so that

(3.19)
∫

B(Q,r)

(
G±(X, X±)

δ(X)

)2+η

dX < ∞ for r < R.

Note that ∫
B(Q,r)

(
G±(X, X±)

δ(X)

)2+η

dX(3.20)

=
∞∑

j=0

∫
{2−s−1r≤δ(X)<2−jr}

(
G±(X, X±)

δ(X)

)2+η

covers
{X ∈ B(Q, r); 2−j−1r ≤ δ(X) < 2−jr} ∩ Ω± = A±

j

by balls {B±
(
Xj

i , r
2j−2

)
}Nj

i=1 such that Xj
i ∈ A±

j , |Xj
i −Xj

l | ≥ r
2j−2 for i 	= l. These

balls have finite overlaps bounded by a number which only depends on n. Moreover

dist
(
B±

(
Xj

i ,
r

2j−2

)
∩ A+

j , ∂Ω
)
≥ r

2j+2
.

Note that for X ∈ A+
j (3.13) yields

(3.21) G+(X, X+) ≤ CG+(A+(Q, r); X+)2−jβ

and ∫
2−j−1r≤δ(X)<2−jr

(
G(X, X+)

δ(X)

)2+η

dX

≤ Cr−(1+η)2j(1+η)2−jβ(1+η)G+(A+(Q, r), X+)1+η

·
∫

2−j−1r≤δ(X)<2−jr

G(X, X+)
δ(X)

dX.(3.22)

For X ∈ B+
(
Xj

i , r
2j+2

)
[11, Lemma 4.8] yields

(3.23)
G+(X, X+)

δ(X)
∼ ω+ (B(QX , δ(X))

δ(X)n−1
,

where QX ∈ ∂Ω is such that |X − QX | = δ(X). The notation a ∼ b means that
there exists a constant C > 1 such that C−1 ≤ a/b ≤ c. By Harnack’s principle for
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X ∈ B+
(
Xj

i , r
2j−2

)
∩ A+

j ,

(3.24) G+(X, X+) ∼ G+(Xj
i , X+).

Note also that for X ∈ B+
(
Xj

i , r
2j−2

)
∩ A+

j , δ(X) ∼ r
2j ∼ δ(Xj

i ). Combining this

remark with the doubling property of ω± (see [11], 4.9 & 4.11), (3.23) and (3.24)
we obtain that for X ∈ B+

(
Xj

i , r
2j−2

)
∩ A+

j

(3.25)
G+(X, X+)

δ(X)
∼ G+(Xj

i , X+)
δ(Xj

i )
∼

ω+
(
B

(
Qj

i ,
r
2j

))
(

r
2i

)n−1

where Qj
i ∈ ∂Ω is such that δ(Xj

i ) = |Xj
i − Qj

i |. In particular

|Qj
i − Qj

l | ≥ |Xj
i − Xj

l | − |Xj
i − Qj

i | − |Xj
l − Qj

l |

≥ |Xj
i − Xj

l | −
r

2j
≥ r

2j−2
− r

2j
≥ r

2j
.

Thus
{

B
(
Qj

i ;
r
2j

)}Nj

i=1
is a disjoint family of balls in B(Q, 2r). Hence the doubling

property of ω+ and (3.25) yield∫
2−j−1≤δ(X)<2−jr

G+(X, X+)
δ(X)

dX(3.26)

=
Nj∑
j=1

∫
A+

j ∩B+(Xj
i , r

2j−2 )

G+(X, X+)
δ(X)

dX

≤ C

Nj∑
i=1

ω+(B(Qj
i , r2

−j))
(r2−j)n−1

Hn(A+
j ∩ B+(Xj

i ))

≤ C
(r2−j)n

(r2−j)n−1
ω+(B(Q, r))

≤ C2−jrω+(B(Q, r)).

Combining (3.20), (3.22) and (3.26) we obtain∫
B(Q,r)

(
G+(X, X+)

δ(X)

)2+η

dX(3.27)

≤ C
∞∑

j=0

2j(1+η)−jβ(1+η)2−j ·
(

G+(A+(Q, r), X+)
r

)1+η

· rω+(B(Q, r)).

If η < β
1−β , the series on the r.h.s. in (3.27) converges. The estimate for G−(−, X−)

is identical. Thus using (3.18), (3.15) and (3.27) we conclude that

(3.28)
∫

B(Q,r)

|∇u|2+η ≤ Cη

(
ω+(B(Q, r))2+η

r(n−1)(1+η)−1
+

ω−(B(Q, r))2+η

r(n−1)(1+η)

)
.

Hence u ∈ W 1,2(B(Q, r)) and Ω is admissible. �
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Theorem 3.2. Let Ω ⊂ R
n be a 2-sided locally NTA domain. Given a compact set

K ⊂ R
n, there exists RK ∈ (0, min{δ(X+), δ(X−)}) such that for 4r < RK and

Q ∈ ∂Ω ∩ K,

(3.29)
ω±(B(Q, r))

rn−1
∼

(
1
r2

∫
B(Q,r)

|∇u±|2
|X − Q|n−2

dX

) 1
2

and

(3.30) γ(Q, r)
1
2 ∼ ω+(B(Q, r))

rn−1
· ω−(B(Q, r))

rn−1
.

The proof is a straightforward combination of the doubling property of ω± (see
(3.16)), (3.9), (3.14) and (3.15). The constants that appear in (3.29) and (3.30)
depend on the set K.

We turn our attention to the tangent structure of 2-sided locally NTA domains.
Let Ω ⊂ R

n be a 2-sided locally NTA domain. Let {rj}j≥1 be a sequence of
positive numbers such that lim

j→∞
rj = 0. For Q ∈ ∂Ω, consider

(3.31) Ω±
j =

1
rj

(Ω± − Q) with ∂Ω±
j =

1
rj

(∂Ω± − Q),

the functions

(3.32) u±
j (X) =

u±(rjX + Q)
ω±(B(Q, rj))

rn−2
j

and the measures

(3.33) ω±
j (E) =

ω±(rjE + Q)
ω±(B(Q, rj))

for E ⊂ R
n a Borel set.

Note that Lemma 3.4 ensures that given a compact set K ⊂ R
n containing Q, for

j large enough (depending only on K),

(3.34) C−1
K ≤ u±(A±(Q, rj))

ω±(B(Q, rj))
rn−2
j ≤ CK .

Here CK is a constant that only depends on K, and A±(Q, rj) denote the non-
tangential points associated to Q at radius rj in Ω±.

The boundary Harnack principle (see Lemma 3.3) yields that for N > 1, X ∈
B(0, N) and j large enough depending only on N

(3.35) u±(rjX + Q) ≤ CN,Ku±(A±(Q, rj)).

Thus combining (3.32) and (3.34) we obtain that

(3.36) sup
j≥1

sup
X∈B(0,N)

u±
j (X) ≤ CN,K < ∞.

Furthermore since ω± are locally doubling (see Lemma 3.5),

(3.37) sup
j≥1

ω±
j (B(0, N)) ≤ CN,K < ∞.
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Theorem 3.3. Let Ω ⊂ R
n be a 2-sided locally NTA domain. Using the notation

above, we have that there exists a sequence (which we relabel) satisfying as j → ∞

Ω±
j → Ω±

∞ in the Hausdorff distance sense(3.38)
uniformly on compact sets,

∂Ω±
j → ∂Ω±

∞ in the Hausdorff distance sense(3.39)
uniformly on compact sets,

where Ω±
∞ are unbounded NTA domains with ∂Ω+

∞ = ∂Ω−
∞. Moreover, there exist

u±
∞ ∈ C(Rn) such that

(3.40) u±
j → u±

∞ uniformly on compact sets

and

(3.41)

⎧⎨⎩
∆u±

∞ = 0 in Ω±
∞,

u±
∞ = 0 on ∂Ω±

∞,
u±
∞ > 0 in Ω±

∞.

Furthermore

(3.42) ω±
j ⇀ ω±

∞ weakly as Radon measures.

Here ω±
∞ are the harmonic measures of Ω±

∞ with pole at infinity, corresponding to
u±
∞, i.e. ∀ϕ ∈ C∞

c (Rn),

(3.43)
∫

Ω±
∞

u±
∞∆ϕ =

∫
∂Ω±

∞

ϕ dω±
∞.

For the proof of this theorem see [14], §4.
When Ω is a 2-sided locally NTA domain, by the differentiation theory of Radon

measures (see [7]) we know that

(3.44) ∂Ω = Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ4,

where

Λ1 =
{

Q ∈ ∂Ω : 0 < h(Q) :=
dω−

dω+
(Q) = Dω+ω−(Q) = lim

r→0

ω−(B(Q, r))
ω+(B(Q, r))

< ∞
}

,

(3.45)

Λ2 =
{

Q ∈ ∂Ω : Dω+ω−(Q) = lim
r→0

ω−(B(Q, r))
ω+(B(Q, r))

= ∞
}

,(3.46)

Λ3 =
{

Q ∈ ∂Ω : Dω+ω−(Q) = lim
r→0

ω−(B(Q, r))
ω+(B(Q, r))

= 0
}

,(3.47)

Λ4 =
{

Q ∈ ∂Ω : lim
r→0

ω−(B(Q, r))
ω+(B(Q, r))

does not exist
}

.(3.48)

Note that:

• ω+(Λ2) = 0, ω−(Λ3) = 0 and ω±(Λ4) = 0.
• ω+ ⊥ ω− in Λ2 ∪ Λ3.
• ω+ Λ1 and ω− Λ1 are mutually absolutely continuous.
• By the Radon-Nikodym theorem h ∈ L1

loc(ω
+) and 1

h ∈ L1
loc(ω

−).



788 C. KENIG, D. PREISS, AND T. TORO

Define

Γ ={Q ∈ Λ1 : Q density point of Λ1 with respect to ω±,

(3.49)

h(Q) = lim
r→0

��
∫

B(Q,r)h dω+, lim
r→0

��
∫

B(Q,r)|h(P ) − h(Q)|dω+(P ) = 0}.

Note that ω±(Λ1\Γ) = 0.

Theorem 3.4. Let Ω ⊂ R
n be a 2-sided locally NTA domain. For Q ∈ Γ (defined

in (3.49)) the blow-up procedure in Theorem 3.3 yields

ω+
∞ = ω−

∞,(3.50)
u∞ = u+

∞ − u−
∞ is a harmonic polynomial in R

n.(3.51)

Furthermore there exists η = η(n) > 0 such that if Ω is a η-Reifenberg flat domain
(i.e. for each compact set K ⊂ R

n there exists rK > 0 so that for P ∈ ∂Ω∩K, and
r ∈ (0, rK), β∞(P, r) < η(n)), then u∞ is linear. Here

(3.52) β∞(P, r) =
1
r

inf
L∈G(n,n−1)

D[∂Ω ∩ B(P, r); L ∩ B(P, r)],

and D denotes the Hausdorff distance between sets.

Proof. Let Q ∈ Γ, and let {rj}j≥1 be a sequence of positive numbers such that
limj→∞ rj = 0. Suppose that (3.38), (3.39), (3.40), (3.41) and (3.42) hold. Let
ϕ ∈ Cc(Rn); then

(3.53)
∫

∂Ω±
j

ϕdω±
j =

1
ω±(B(Q, rj))

∫
∂Ω±

ϕ

(
P − Q

rj

)
dω+(P ).

In particular if spt ϕ ∈ B(0, M), then∫
∂Ω±

j

ϕdω−
j =

1
ω−(B(Q, rj))

∫
∂Ω

ϕ

(
P − Q

rj

)
h(P )dω+(P )(3.54)

+
1

ω−(B(Q, rj))

∫
∂Ω∩Λ2

ϕ

(
P − Q

rj

)
dω−(P )

(3.55)
1

ω−(B(Q, rj))

∫
∂Ω

ϕ

(
P − Q

rj

)
h(P )dω+(P )

=
ω+(B(Q, rj))
ω−(B(Q, rj))

· 1
ω+(B(Q, rj))

∫
ϕ

(
P − Q

rj

)
h(P )dω+(P )

= h(Q) · ω+(B(Q, rj))
ω−(B(Q, rj))

· 1
ω+(B(Q, rj))

∫
∂Ω

ϕ

(
P − Q

rj

)
dω+(P )

+
ω+(B(Q, rj))
ω−(B(Q, rj))

· 1
ω+(B(Q, rj))

∫
∂Ω

ϕ

(
P − Q

rj

)
(h(P ) − h(Q))dω+(P ).
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Thus using the fact that ω± is locally doubling, for Q ∈ Γ, (3.54) and (3.55) yield

(3.56)∣∣∣∣∣∣
∫

∂Ω−
j

ϕdω−
j − h(Q)

��
∫

B(Q,rj)hdω+

∫
∂Ω+

j

ϕdω+
j

∣∣∣∣∣∣
≤ ‖ϕ‖∞ · ω+(B(Q, rj))

ω−(B(Q, rj))
· ω+(B(Q, Mrj))

ω+(B(Q, rj))
��
∫

B(Q,Mrj)

|h(P ) − h(Q)|dω+(P )

+ ‖ϕ‖∞
ω−(B(Q, Mrj) ∩ Λ2)

ω−(B(Q, rj))

≤ CK,M‖ϕ‖∞

{
ω+(B(Q, rj))
ω−(B(Q, rj))

·��
∫

B(Q,Mrj)

|h(P ) − h(Q)|dω+(P ) +
ω−(B(Q, Mrj)\Λ1)

ω−(B(Q, Mrj))

}
.

Since Q ∈ Γ, by letting j → ∞ we obtain

(3.57)
∫

∂Ω+
∞

ϕdω−
∞ =

∫
∂Ω−

∞

ϕdω+
∞

for every ϕ ∈ Cc(Rn). Since ∂Ω+
∞ = ∂Ω−

∞, to show that u∞ = u+
∞−u−

∞ is harmonic
in R

n, let ϕ ∈ C∞
c (R). By (3.57) we have∫

Rn

u∞∆ϕ =
∫

Ω+
∞

u∞∆ϕdY −
∫

Ω−
∞

u∞∆ϕdY(3.58)

=
∫

∂Ω+
∞

ϕdω+
∞ −

∫
∂Ω−

∞

ϕdω−
∞ = 0.

Since u∞ is continuous in R
n, it is weakly harmonic and therefore harmonic in R

n.
Note that u∞(0) = 0. An argument similar to the one that appears in the proof of
Theorem 4.4 in [14] shows that u∞ is a harmonic polynomial. Theorem 4.1 in [13]
shows that given δ > 0, there exists η > 0 such that if Ω is η-Reifenberg flat, then
ω+ is δ-doubling as in Definition 4.4 in [14]. The same argument as in the proof of
Theorem 4.4 in [14] shows in this case that if ω+ is δ-doubling with nδ < 1, then
u∞ is linear. �

Corollary 3.1. There exists η > 0 such that if Ω is a η-Reifenberg flat domain,
then

(3.59) dimH Γ ≤ n − 1.

Proof. Theorem 3.1 in [13] shows that if η is small enough depending only on n,
then Ω is a 2-sided locally NTA domain. Thus by Theorem 3.4 for Q ∈ Γ all blow-
ups of ∂Ω at Q are the zero set of a linear polynomial that is an (n − 1)-plane.
For Q ∈ ∂Ω, the last remark in Theorem 3.4 ensures that limr→0 β∞(Q, r) = 0.
Thus, given ε > 0, there exists rQ,ε > 0 such that for r < rQ,ε, β∞(Q, r) < ε, which
implies that there exists an (n − 1)-plane L(Q, r) through Q so that

(3.60) ∂Ω ∩ B(Q, r) ⊂ ∂Ω ∩ B(Q, r) ⊂ (L(Q, r) ∩ B(Q, r); εr).
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Thus for Q ∈ ∂Ω, limr→0 β∂Ω(Q, r) = 0. Lemma 2.4 yields the conclusion of the
corollary. �

4. Tangent structure and size of Γ

Let F be the set of (n − 1) flat measures in R
n, i.e.

(4.1) F = {cHn−1 V : c ∈ (0,∞); V ∈ G(n, n − 1)}.
Note that since G(n, n − 1) is compact, F has a compact basis, and it is closed
under the weak convergence of Radon measure.

Lemma 4.1. Let h be a harmonic polynomial in R
n such that h(0) = 0, and

{h > 0} and {h < 0} are unbounded NTA domains. Let ω be the corresponding
harmonic measure, i.e. ∀ϕ ∈ C∞

c (Rn)

(4.2)
∫
{h>0}

h+∆ϕ =
∫
{h<0}

h−∆ϕ =
∫
{h=0}

ϕdω.

There exists ε0 > 0 (depending on the NTA constant of {h > 0} and on n) such
that if for some r0 > 0

(4.3) dr(ω,F) < ε0 for r ≥ r0, then ω ∈ F .

Remark 4.1. Note that h is the Green’s function with pole at infinity for {h > 0}
and ω is its corresponding harmonic measure.

Proof. Let τ > 1 and r ≥ r0; there exists Ψ ∈ F such that Fτr(Ψ) = 1 and

(4.4) Fr

(
ω

Fτr(ω)
, Ψ

)
≤ Frτ

(
ω

Fτr(ω)
, Ψ

)
< ε0.

Thus

(4.5) Fr(Ψ) − ε0 ≤ Fr(ω)
Fτr(ω)

≤ Fr(Ψ) + ε0.

Since Ψ = cHn−1 V , Frτ (Ψ) = 1 = cωn−1
n (τr)n and Fr(Ψ) = τ−n. Thus given

δ > 0 (small enough) for τ ∈ (1, τε0,δ) with τε0,δ =
(

δε−1
0
2

) 1
n

for r ≥ r0, (4.5) yields

(4.6) (1 + δ)−1τ−n <
Fr(ω)
Fτr(ω)

< (1 + δ)τ−n.

Applying (4.6) to τ jr for j = 1, . . . , � with � ∈ N and r ≥ r0, then multiplying
the outcomes we obtain

(4.7) [(1 + δ)−1τ−n]� ≤ Fr(ω)
Fτ�r(ω)

≤ [(1 + δ)τ−n]�.

Since ω is a doubling measure with the doubling constant depending only on the
NTA constant of {h > 0} and on n (see [15] Lemma 3.1 or [11] Lemma 4.9, 4.11),
from the definition of Fr (see Definition 2.1) we have that there is C > 1 such that
for r > 0

(4.8) C−1rω(B(0, r)) ≤ r

2
ω

(
B

(
0,

r

2

))
≤ Fr(ω) ≤ rω(B(0, r)).

Combining (4.7) and (4.8) we obtain

(4.9) C−1[(1 + δ)−1τ−n]� ≤ ω(B(0, r))
τ �ω(B(0, τ �r))

≤ C[(1 + δ)τ−n]�.
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Thus

(4.10) C−1(1 + δ)−� ω(B(0, τ �r))
(τ �r)n−1

≤ ω(B(0, r))
rn−1

≤ C(1 + δ)� ω(B(0, τ �r))
(τ �r)n−1

.

By Lemma 3.4 in [15] (see also Lemma 4.8 in [11]) we know that there exists
C > 1 depending only on n and on the NTA constant of {h > 0} such that

(4.11) C−1 ≤ ω(B(0, r))
rn−2h(A(0, r))

≤ C.

Here A(0, r) ∈ {h > 0} denotes a non-tangential point for 0 at radius r > 0.
Combining (4.10) and (4.11) we have

(4.12) C−1(1 + δ)−� h(A(0, τ �r))
τ �r

≤ h(A(0, r))
r

≤ C(1 + δ)� h(A(0, τ �r))
τ �r

.

If 1 + δ = τβ with β ∈ (0, 1), then (4.12) becomes

(4.13) C−1τ−β� h(A(0, τ �r))
τ �r

≤ h(A(0, r))
r

≤ Cτβ� h(A(0, τ �r))
τ �r

.

Note that by choosing δ = 4ε0 (with ε0 > 0 to still be determined), then τε0,δ =
τ0 = 2

1
n and 1 + δ = 1 + 4ε0 = τβ for some τ ∈ (1, 21/n) and β ∈ (0, 1) provided

ε0 < 1
4 (21/n − 1). For s ∈ (r0, +∞) there is � ≥ 1 such that τ �−1r0 < s ≤ τ �r0.

For such s, the boundary Harnack’s inequality (for NTA domains (see Lemma 3.3
in [15], also Lemma 4.4 in [11])), combined with (4.13), yields

h(A(0, s))
s

≤ C
h(A(0, τ �r0))

τ l−1r0
≤ Cτ

h(A(0, τ �r0))
τ �r0

(4.14)

≤ Cττ �β h(A(0, r0))
r0

≤ Cτ1+β

(
s

r0

)β
h(A(0, r0))

r0
.

Since h is harmonic, using its Poisson integral formula and computing its second
derivatives (as in the proof of Theorem 4.4 in [14]) from (4.14), we obtain that for
X ∈ B(0, s)

(4.15) |∂α1∂α2h(X)| ≤ C
h(A(0, s))

s2
≤ C(τ, r0)sβ−1 h(A(0, r0))

r0
.

Since β < 1, by letting s → ∞ we conclude that h is a polynomial of degree 1, and
therefore ω is an (n − 1) flat measure. �

We will now return to the question of the extent to which the relative behavior
of the interior and exterior harmonic measures determines the size of the boundary
of a domain.

Remark 4.2. Note that for Q ∈ Γ

(4.16) Tan (ω+, Q) = Tan (ω−, Q).

Theorem 4.1. Let Ω be a 2-sided locally NTA domain. Let Γ be as in (3.49), and

(4.17) Γ∗ =
{
Q ∈ Γ : Tan (ω±, Q) ∩ F 	= ∅

}
.

Then for Q ∈ Γ∗, Tan (ω±, Q) ⊂ F . In particular, all blow-ups of ∂Ω at Q ∈ Γ∗ are
(n−1)-planes, and dimH Γ∗ ≤ n−1. Furthermore Γ0 = Γ\Γ∗ satisfies ω±(Γ0) = 0.
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Proof. For Q ∈ Γ the blow-up procedure described in Theorem 3.3 always yields a
harmonic polynomial (see Theorem 3.4). Let h be a tangent harmonic polynomial of
u at Q, with {h > 0}, {h < 0} (unbounded NTA domains) and ν the corresponding
harmonic measures to h±. By [10] the zero set of h, i.e. ∂{h > 0}, decomposes into a
disjoint union of the embedded C1 submanifold h−1{0}∩{|Dh| > 0}, together with
a closed set h−1{0}∩ |Dh|−1|0| which is countably (n− 2)-rectifiable. Furthermore
by Lemma 2.3, spt ν = h−1{0}. For Y ∈ h−1{0} ∩ {|Dh| > 0} and X ∈ R

n

(4.18) hY,r(X) =
h(rX + Y )

r
−→
r→0

〈Dh(Y ), X〉

uniformly on compact sets. Thus r−1(∂{h > 0}−Y ) → 〈 Dh(Y )
|Dh(Y )| 〉⊥ = V as r → 0, in

the Hausdorff distance sense, and r−(n−1)TY,r[ν] → |Dh(Y )|Hn−1 V . Therefore,
for Y ∈ h−1{0} ∩ {|Dh| > 0} all non-zero tangent measures of ν at Y are flat,
i.e. Tan (ν, Y ) ⊂ F . By Theorem 2.3 for ω = ω± a.e. Q ∈ Γ, if ν ∈ Tan (ω, Q),
then for all Y ∈ spt ν, Tan (ν, Y ) ⊂ Tan (ω, Q). Thus, for ω a.e. Q ∈ Γ, F ∩
Tan (ω, Q) 	= ∅, which proves that ω±(Γ0) = 0. Our goal is to use Corollary
2.1 combined with Lemma 4.1 to show that for Q ∈ Γ∗, Tan (ω, Q) ⊂ F . Let
M = F ∪Tan (ω, Q). Recall that F , the set of all (n− 1) flat measures, is a d-cone
with compact basis. Since ω is a doubling Radon measure, Theorem 2.2 ensures
that for Q ∈ Γ, Tan (ω, Q) is a d-cone with compact basis. Hence M is also a d-cone
with compact basis. Moreover F ⊂ M, and F is relatively closed with respect to
the weak convergence of Radon measures. By Lemma 4.1 there exists ε0 > 0 such
that if dr(µ,F) < ε0 for all r ≥ r0, then µ ∈ F . Corollary 2.1 then ensures that
for Q ∈ Γ∗, Tan (ω, Q) ⊂ F . Lemma 2.3 guarantees that all blow-ups of ∂Ω at Q
converge in the Hausdorff distance sense to an (n − 1)-plane. Thus for Q ∈ Γ∗,
limr→∞ β∞(Q, r) = 0. As in the proof of Corollary 3.1 this implies that for Q ∈ Γ∗,
limr→0 β∗

Γ(Q, r) = 0. By Lemma 2.4 we conclude that dimH Γ∗ ≤ n − 1. �

Corollary 4.1. Let Ω be a 2-sided locally NTA domain. Then the boundary of Ω
can be decomposed as follows:

∂Ω = Γ∗ ∪ S ∪ N,(4.19)

ω+ Γ∗ � ω− Γ∗ � ω+ Γ∗, ω+ ⊥ ω− in S, and ω+(N) = ω−(N) = 0.

(4.20)

Moreover

(4.21) dimH Γ∗ ≤ n − 1.

Furthermore, if ω±(Γ∗) > 0, then

(4.22) dimH Γ∗ = n − 1.

Here Γ∗ is as in Theorem 4.1, S = Λ2 ∪ Λ3 (see (3.46) and (3.47)), and N =
Λ1\Γ∗ ∪ Λ4.

Proof. We only need to show that (4.22) holds whenever ω±(Γ∗) > 0. By (3.12)
for Q0 ∈ ∂Ω, r0 < 1/8 min{δ(X+), δ(X−)}, Q ∈ Γ∗ ∩ B(Q0,

r0
2 ) and 0 < r < r0,

ω+(B(Q, r))
rn−1

· ω−(B(Q, r))
rn−1

≤ C(Q0, r0),(4.23) (
��
∫

B(Q,r)h dω+

) (
ω+(B(Q, r))

rn−1

)2

≤ C(Q0, r0).
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Thus

(4.24)
log

(
��
∫

B(Q,r)h dω+

)1/2

log r
+

log ω+(B(Q, r))
log r

≥ n − 1 +
log C(Q0, r0)

log r
.

Letting r tend to 0 in (4.24) we obtain that

(4.25) lim inf
r→0

log ω+(B(Q, r))
log r

≥ n − 1.

By Proposition 2.3 in [8] from (4.25) we conclude that, since ω+(Γ∗) > 0, dimH Γ∗ ≥
n − 1. �

Theorem 4.2. Let Ω be a 2-sided locally NTA domain such that Hn−1 ∂Ω is a
Radon measure. Then as in Theorem 4.1, ∂Ω = Γ∗ ∪ S ∪ N and Γ∗ is (n − 1)-
rectifiable.

Proof. Our strategy consists in proving that the density of Hn−1 Γ∗ exists and
is 1 a.e. Then we appeal to Theorem 17.6 in [18], which provides a rectifiability
criteria.

First we prove that for Q ∈ Γ∗ (see (4.17) for the definition)

(4.26) Θn−1
∗ (Hn−1 ∂Ω, Q) = lim inf

r→0

Hn−1(B(Q, r) ∩ ∂Ω)
ωn−1rn−1

≥ 1.

For Q ∈ Γ∗ and δ > 0 by Theorem 4.1 there exists r0 > 0 so that for r < r0

there exists L(Q, r) an (n − 1)-plane containing Q so that

(4.27)
1
r
D[∂Ω ∩ B(Q, r); L(Q, r) ∩ B(Q, r)] ≤ δ.

Since Ω± satisfies the corkscrew condition, we may assume that for r < r0 there
exist A±(Q, r) ⊂ Ω± so that

(4.28) B
(
A±(Q, r),

r

M

)
⊂ Ω± ∩ B(Q, r).

��������������������������

..............................

..............................

...............................

...............................

..............................

............................

............................

..............................

...............................
...............................

........................................................................................................................
..............................

.
......................

.........

.................
.............

..............
..............

............
............
....

............
............
......

...........
...........
.........

...........
...........
.........

..........
..........
..........

..........

..........

..........

..........

..........

..........

..........
..........
..........

...........
...........
.........

...........
...........
.........

............
............
......

............
............

....

..............
..............

.................
.............

......................
.........

..............................
.

.............................. .............................. .............................. ..............................
...............................

...............................

..............................

............................

............................

..............................

...............................

...............................

..............................

..............................

...............

................

...............

...............
...............

...............
.............................................................................

...............
.............
..

...........
....

...........
.....

..........

.....

..........

.....

...........
.....

...........
....

.............
..

............... ............... ................ ............... ............... ................
...............
...............
...............

...............

................

...............�
��

...............

................

...............

...............
...............

...............
.............................................................................

...............
.............
..

...........
....

...........
.....

..........

.....

..........

.....

...........
.....

...........
....

.............
..

............... ............... ................ ............... ............... ................
...............
...............
...............

...............

................

...............
���

.
.............
.

............
.

............
............
...........
..........

.

.....................................

..................................

................................

..........................

.............................

...............................
.......... ........... ............ ..... ......... ............. ................ .................... ................. ............. .......... .......... ....................... ....................... ..... ....... ...........

...............
............................

........................
.....................

.................
..............
.......... ............................................................................ ..........

..............
..................

.....................

....................................

.................................

.............................

..........................
.......................

...................
................
............ ......... ........

........................
....................
................
............. ......... ......

...............................
...........................

....................... ........................................... ........................................ ...................................... ................. ............... ............. ........... .........

�

�

�

Ω

r
M

A+(Q, r)

Q
r
M

A−(Q, r)



794 C. KENIG, D. PREISS, AND T. TORO

If �n(Q, r) denotes the unit normal to L(Q, r), (4.27) and (4.28) ensure that for
δ small (δ < 1

2M )
|〈A±(Q, r) − Q,�n(Q, r)〉| ≥ 2δr.

We may assume that 〈A+(Q, r) − Q,�n(Q, r)〉 ≥ 2δr. If Z ∈ B(Q, r) and 〈Z −
Q,�n(Q, r)〉 ≥ 2δr, then Z ∈ Ω+. Otherwise Z ∈ Ω− (since Z 	∈ ∂Ω by (4.27)), and
by connectivity there would be a point P ∈ ∂Ω in the segment joining A+(Q, r)
to Z. Such P would satisfy 〈P − Q,�n(Q, r)〉 ≥ 2δr which contradicts (4.27). This
proves that

(4.29) {Z ∈ B(Q, r) : 〈Z − Q,�n(Q, r)〉 ≥ 2δr} ⊂ Ω+ ∩ B(Q, r)

and

(4.30) {Z ∈ B(Q, r) : 〈Z − Q;�n(Q, r)〉 ≤ −2δr} ⊂ Ω− ∩ B(Q, r).

Thus for x ∈ L(Q, r)∩B
(
Q, r

√
1 − 4δ2

)
a simple connectivity argument shows that

there exists P ∈ ∂Ω such that P = (x, t) with |t| < δr. Hence P ∈ ∂Ω∩B(Q, r). If
πQ,r denotes the orthogonal projection onto L(Q, r) we have for δ small enough

Hn−1(∂Ω ∩ B(Q, r)) ≥ Hn−1(ΠQ,r(∂Ω ∩ B(Q, r))(4.31)

≥ ωn−1r
n−1(1 − 4δ2)

n−1
2

≥ ωn−1r
n−1(1 − δ),

which ensures that (4.26) holds. Since Hn−1 ∂Ω is a Radon measure for Hn−1 ∂Ω
a.e. Q,

(4.32) Θ∗,n−1(Hn−1 ∂Ω, Q) = lim sup
r→0

Hn−1(B(Q, r) ∩ ∂Ω)
ωn−1rn−1

≤ 1;

see [18] in Theorem 6.2. Thus combining (4.26) and (4.32) we conclude that for
Q ∈ Γ∗,

(4.33) Θn−1(Hn−1 ∂Ω, Q) = lim
r→0

Hn−1(B(Q, r) ∩ ∂Ω)
ωn−1rn−1

= 1.

Thus since Hn−1 ∂Ω is a Radon measure, by Corollary 6.3 in [18] for Hn−1 a.e.
Q ∈ Γ∗,

(4.34) Θn−1(Hn−1 ∂Ω, Q) = Θn−1(Hn−1 Γ∗, Q) = 1.

Therefore Theorem 17.6 in [18] ensures that Γ∗ is (n − 1)-rectifiable. �

The following theorem proves that there are no Wolff snowflakes for which ω+

and ω− are mutually absolutely continuous, answering a question in [16].

Theorem 4.3. Let Ω be a 2-sided locally NTA domain. Assume that ω+ and ω−

are mutually absolutely continuous; then

(4.35) H− dimω+ = H− dimω− = n − 1.

Here the Hausdorff dimension of ω±, H− dimω± is defined as in (1.2).

Proof. Since ω+ and ω− are mutually absolutely continuous, it is easy to see that
H−dimω+ = H−dim ω−. For each compact set K ⊂ R

n, ω±(Γ∩K) = ω±(∂Ω∩K).
Hence for Γ∗ = Γ\Γ0 with Γ0 as in Theorem 4.1, ω±(Γ∗ ∩ K) = ω±(∂Ω ∩ K) and
dimH Γ∗ ≤ n−1, i.e. ∀κ > n−1, Hκ(Γ∗) = 0, which implies that H−dim ω+ ≤ n−1
and H − dim ω− ≤ n − 1. Since in this case ω±(Γ∗) > 0 (by (4.19) and (4.20)),
(4.22) yields (4.35). �
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We conclude by having a second look at Γ motivated by the 2-dimensional results
in Chapter VI of [9]. Denote it by ω = ω±, and define

Γg =
{

Q ∈ Γ : 0 < lim sup
r→0

ω(B(Q, r))
rn−1

< ∞
}

, Γ∗
g = Γg ∩ Γ∗,(4.36)

Γb =
{

Q ∈ Γ : lim sup
r→0

ω(B(Q, r))
rn−1

= 0
}

Γ∗
b = Γb ∩ Γ∗.(4.37)

Since ω+ Λ1 and ω− Λ1 are mutually absolutely continuous, and Γ ⊂ Λ1 (see
(3.49)), Γg and Γb are well defined.

By (3.12) for Q0 ∈ ∂Ω, r0 < 1/8 min{δ(X+), δ(X−)}, Q ∈ Γ ∩ B(Q0,
r0
2 ) and

0 < r < r0,

(4.38)

(
��
∫

B(Q,r)

h dω+

)(
ω+(B(Q, r))

rn−1

)2

≤ C(Q0, r0).

Thus for Q ∈ Γ, lim supr→0
ω(B(Q,r))

rn−1 < ∞, which ensures that Γ = Γg ∪ Γb.

Lemma 4.2. Let Ω be a 2-sided locally NTA domain. Then Hn−1 Γg and ω Γg

are mutually absolutely continuous. In particular Hn−1 Γg is σ-finite. Further-
more Γ∗ = Γ∗

g∪Γ∗
b∪Z with ω(Z) = 0. Moreover if for E ⊂ R

n Borel, ω(Γ∗
b∩E) > 0,

then Hn−1(Γ∗
b ∩ E) = ∞.

Proof. Let

(4.39) Γg =
∞⋃

i=1

Γi
g =

∞⋃
i=1

{
Q ∈ Γg; 2−i ≤ lim sup

r→0

ω(B(Q, r))
rn−1

≤ 2i

}
.

By Proposition 2.2 in [8] for any Borel set E ⊂ Γ and i, k ∈ N,

(4.40) 2−iω(E∩Γi
g∩B(0, k)) ≤ Hn−1(E∩Γi

g∩B(0, k)) ≤ 2n+iω(E∩Γi
g∩B(0, k)),

which proves the statements that Hn−1 Γg and ω Γg are mutually absolutely
continuous. The statement about Γb is a simple consequence of Proposition 2.2 in
[8]. �

Corollary 4.2. Let Ω be a 2-sided locally NTA domain. Then the boundary of Ω
can be decomposed as follows:

(4.41) ∂Ω = Γ∗
g ∪ Γ∗

b ∪ S ∪ Ñ ,

where

(4.42) ω+ � ω− � ω+ in Γ∗
g∪Γ∗

b , ω+ ⊥ ω− in S, and ω+(Ñ) = ω−(Ñ) = 0.

On Γ∗
g, Hn−1 is σ-finite, and ω and Hn−1 are mutually absolutely continuous. On

Γ∗
b for any Borel set E, if ω(Γ∗

b ∩ E) > 0, then Hn−1(Γ∗
b ∩ E) = ∞.
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