Betti numbers of graded modules and cohomology of vector bundles
HTML articles powered by AMS MathViewer
- by David Eisenbud and Frank-Olaf Schreyer;
- J. Amer. Math. Soc. 22 (2009), 859-888
- DOI: https://doi.org/10.1090/S0894-0347-08-00620-6
- Published electronically: October 27, 2008
- PDF | Request permission
Abstract:
In the remarkable paper Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Mats Boij and Jonas Söderberg conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice.
With the same tools we show that the cohomology table of any vector bundle on projective space is a positive rational linear combination of the cohomology tables of what we call supernatural vector bundles. Using this result we give new bounds on the slope of a vector bundle in terms of its cohomology.
References
- [2006]BS M. Boij and J. Söderberg. Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture. math.AC/0611081.
[2008]BS2 M. Boij and J. Söderberg. Betti numbers of graded modules and the Multiplicity Conjecture in the non-Cohen-Macaulay case. Preprint: arXiv:0803.1645.
- David A. Buchsbaum and David Eisenbud, Remarks on ideals and resolutions, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971 & Convegno di Geometria, INDAM, Rome, 1972) Academic Press, London-New York, 1973, pp. 193–204. MR 337946
- David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268. MR 314819, DOI 10.1016/0021-8693(73)90044-6
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426. MR 1990756, DOI 10.1090/S0002-9947-03-03291-4 [2007]EFW D. Eisenbud, G. Fløystad and J. Weyman. The existence of pure free resolutions. arXiv:0709.1529.
- David Eisenbud and Frank-Olaf Schreyer, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16 (2003), no. 3, 537–579. With an appendix by Jerzy Weyman. MR 1969204, DOI 10.1090/S0894-0347-03-00423-5 [2007]Erman D. Erman. The Semigroup of Betti Diagrams. arXiv:0806.4401
- Christopher A. Francisco and Hema Srinivasan, Multiplicity conjectures, Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math., vol. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 145–178. MR 2309929, DOI 10.1201/9781420050912.ch5 [M2]M2 D. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
- Robin Hartshorne and André Hirschowitz, Cohomology of a general instanton bundle, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 365–390. MR 683638
- J. Herzog and M. Kühl, On the Betti numbers of finite pure and linear resolutions, Comm. Algebra 12 (1984), no. 13-14, 1627–1646. MR 743307, DOI 10.1080/00927878408823070
- Jürgen Herzog and Hema Srinivasan, Bounds for multiplicities, Trans. Amer. Math. Soc. 350 (1998), no. 7, 2879–2902. MR 1458304, DOI 10.1090/S0002-9947-98-02096-0
- D. Kirby, A sequence of complexes associated with a matrix, J. London Math. Soc. (2) 7 (1974), 523–530. MR 337939, DOI 10.1112/jlms/s2-7.3.523 [2008]kunte M. Kunte. Gorenstein modules of finite length. Thesis, Uni. des Saarlandes (2008).
- Shigeru Mukai, Curves and symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 1, 7–10. MR 1158012 [2003]Mukai-unpublished S. Mukai. Curves and Symmetric Spaces II. RIMS preprint 2003, http://www.kurims. kyoto-u.ac.jp/preprint/preprint$\_$y2003.html
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- Frank-Olaf Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), no. 1, 105–137. MR 849058, DOI 10.1007/BF01458587 [2006]JS J. Söderberg. Graded Betti numbers and $h$-vectors of level modules. Preprint, arxiv:math.AC/0612047.
- Jerzy Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, vol. 149, Cambridge University Press, Cambridge, 2003. MR 1988690, DOI 10.1017/CBO9780511546556
Bibliographic Information
- David Eisenbud
- Affiliation: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
- MR Author ID: 62330
- ORCID: 0000-0002-5418-5579
- Email: eisenbud@math.berkeley.edu
- Frank-Olaf Schreyer
- Affiliation: Mathematik und Informatik, Universität des Saarlandes, Campus E2 4, D-66123 Saarbrücken, Germany
- MR Author ID: 156975
- Email: schreyer@math.uni-sb.de
- Received by editor(s): January 17, 2008
- Published electronically: October 27, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 22 (2009), 859-888
- MSC (2000): Primary 14F05, 13D02; Secondary 13D25, 14N99
- DOI: https://doi.org/10.1090/S0894-0347-08-00620-6
- MathSciNet review: 2505303
Dedicated: Dedicated to Mark Green, whose work connecting Algebraic Geometry and Free Resolutions has inspired us for a quarter of a century, on the occasion of his sixtieth birthday